
Water Replenishment District of Southern California

REGIONAL GROUNDWATER MONITORING REPORT WATER YEAR 2019-2020

Central and West Coast Basins Los Angeles County, California

March 2021

Water Replenishment District

REGIONAL GROUNDWATER MONITORING REPORT CENTRAL BASIN AND WEST COAST BASIN LOS ANGELES COUNTY, CALIFORNIA WATER YEAR 2019 - 2020

MARCH 2021

WRD BOARD OF DIRECTORS

Willard H. Murray, Jr. Rob Katherman Division 1 Division 2 John D.S. Allen Division 3

n Sergio Calderon Division 4

n Vera Robles DeWitt Division 5

Management:

Robb Whitaker, PE Rob Beste, PE Ted Johnson, PG, CHG Brian Partington, PG, CHG General Manager Assistant General Manager Assistant General Manager Manager of Hydrogeology

Prepared by:

Mat Kelliher, PG, CHG	Hydrogeologist
Everett Ferguson, Jr., PG, CHG	Senior Hydrogeologist
Joseph Liles, PG, CHG	Hydrogeologist
Benny Chong	Associate Hydrogeologist
Peter Piestrzeniewicz	Associate Hydrogeologist
Moises Santillan	Assistant Hydrogeologist
Brittany Liu	Water Quality & Regulatory Compliance
	Specialist
Josi Jenneskens	GIS Specialist
Greg Osti	Online Technology & Data Specialist

Cover photo – View northwest across the San Gabriel River Spreading Grounds and the Rio Hondo Spreading Grounds to downtown Los Angeles.

Executive Summary

The Water Replenishment District (WRD or the District) was formed in 1959 to manage the groundwater replenishment and groundwater quality activities for four million people in 43 cities that overlie the Central Basin and West Coast Basin (CBWCB) in southern Los Angeles County. WRD's service area encompasses most of the Central Basin and nearly all of the West Coast Basin. These two basins currently supply over 40 percent of the water used by the population in the region. Our mission is to protect and preserve high-quality groundwater in the basins through innovative, cost-effective, and environmentally sensitive management practices for the benefit of residents and businesses within the WRD service area.

This year marks the 61st year that WRD has been monitoring the CBWCB, and this year's annual report presents the most comprehensive information to date utilizing WRD's network of aquifer-specific monitoring wells and in-depth water quality analysis. To that end, WRD has a dedicated Board and staff that engage in year-round activities to closely monitor groundwater conditions. The Regional Groundwater Monitoring Program (RGWMP) currently consists of a network of 335 monitoring wells at 60 locations throughout the District. WRD performs extensive collection, analysis, and reporting of groundwater data to ensure proper resource management. The publication of this Regional Groundwater Monitoring Report (RGWMR) is one result of those efforts. It presents information on groundwater levels and groundwater quality over the past Water Year (WY), which runs from October 1 through September 30. This current report covers WY 2019-2020. Detailed information is presented in the body of the report with a summary below:

Groundwater Levels

Across the WRD service area, water levels have generally increased over the WY. On average this year water levels rose nearly one and three-quarter feet across the District. In both the Central and West Coast Basins, changes in water levels have been variable in WY 2019-2020. Groundwater levels have increased in some areas, decreased in other areas, and have remained unchanged elsewhere. Overall groundwater storage gain across the District was 24,200 acre-feet (AF); 24,200 AF of that gain in storage occurred in the unconfined Montebello Forebay. There was a loss in groundwater storage in the Los Angeles Forebay of about 1,300 AF; the Whittier Area experienced a gain of 1,100 AF; and 300 AF of storage was gained in the Central Basin Pressure Area (CBPA). In the West Coast Basin there was a loss in storage of 100 AF.

Groundwater Quality

Annually, WRD collects over 600 groundwater samples from its monitoring well network and analyzes them for more than 100 water quality constituents to produce over 60,000 individual data points to help track the water quality in the CBWCB. By analyzing and reviewing the results on a regular basis, new and emerging water quality concerns can be identified and managed effectively.

Analysis for this report uses water quality maps and trend graphs to focus on 11 key water quality constituents to represent overall groundwater quality in the basins, including total dissolved solids (TDS), iron, manganese, chloride, nitrate, trichloroethylene (TCE), tetrachloroethylene (PCE), arsenic, perchlorate, hexavalent chromium, and 1,4-dioxane. Beginning in WY 2018-19 and culminating in WY 2019-2020, WRD completed a District-wide assessment for the presence of per- and polyfluoroalkyl substance (PFAS) constituents, including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), in WRD nested monitoring wells and CBWCB production wells. Data collected from the two-year PFAS assessment are included in this report, as are water quality maps illustrating the occurrence of PFOS and PFOA across the District. Overall, groundwater quality in the District remains very good, with only some areas facing poor water quality from natural or anthropogenic sources that WRD staff continue to monitor closely to determine increasing or decreasing trends.

This report also complies with the state's Recycled Water Policy to present information for the adopted Salt and Nutrient Management Plan (SNMP) for the CBWCB. Through the RGWMP, 13 key WRD nested monitoring wells track salt and nutrient water quality trends throughout the District and in the most critical areas of the basins, including areas near groundwater recharge projects that utilize recycled water (i.e. the seawater intrusion barriers and the Montebello Forebay Spreading Grounds). Overall, the data show that salt and nutrient concentrations in groundwater are generally stable, and although a few individual well zones do show increasing trends, a comparable number show decreasing trends.

Future Activities

WRD remains committed to its statutory charge to protect and preserve groundwater resources in its service area. To that end, WRD plans to add to its groundwater monitoring well network in the CBWCB to fill data gaps and enhance the tracking of replenishment water by installing three new wells within and downgradient of the Montebello Forebay Spreading Grounds.

WRD will continue to use the data generated by the RGWMP along with WRD's Geographic Information System (GIS) capabilities to address current and potential upcoming issues related to water quality and groundwater replenishment in its service area. WRD staff will be working on refining the hydrogeologic conceptual model of the CBWCB using data from the RGWMP along with an update to the groundwater model, developed by the United States Geological Survey (USGS) and expected to be published in 2021, to improve the framework for understanding the groundwater system and for use as a planning tool.

Further information is available on the WRD web site at <u>http://www.wrd.org</u>, or by calling WRD at (562) 921-5521. WRD welcomes any comments or suggestions to this RGWMR.

TABLE OF CONTENTS

Glossary of Acronyms

Glossary of Acronyms Used in Report (following Table of Contents)G-1

Section 1 Introduction

1.1	Background of the Regional Groundwater Monitoring Program	. 1-1
1.2	Conceptual Hydrogeologic Model	
1.3	GIS Development and Implementation	
1.4	Scope of Report	

Section 2 Groundwater Levels

2.1	Groundwater Elevation Contours	. 2-2
2.2	Changes in Groundwater Levels	. 2-2
2.3	Groundwater Level Hydrographs	.2-4
2.4	Groundwater Levels in the Montebello Forebay	. 2-5
2.5	Groundwater Levels in the Los Angeles Forebay	
2.6	Groundwater Levels in the Central Basin Pressure Area	.2-7
2.7	Groundwater Levels in the Whittier Area	. 2-9
2.8	Groundwater Levels in the West Coast Basin	.2-10

Section 3 Groundwater and Replenishment Water Quality

3.1	Quality of Groundwater	
3.1.1	Total Dissolved Solids	
3.1.2	Iron	
3.1.3	Manganese	
3.1.4	Chloride	
3.1.5	Nitrate	
3.1.6	Trichloroethylene (TCE)	
3.1.7	Tetrachloroethylene (PCE)	
3.1.8	Arsenic	
3.1.9	Perchlorate	
3.1.10	Hexavalent Chromium	
3.1.11	1,4-Dioxane	
3.1.12	Perfluoroalkyl & Polyfluoroalkyl Substances (PFAS)	

3.2	Quality of Replenishment Water	
3.2.1	Quality of Imported Water	
3.2.2	Quality of Recycled Water	
3.2.3	Quality of Stormwater	
3.3	Mineral Characteristics of Groundwater in the CBWCB	

Section 4 Salt and Nutrients in Groundwater

4.1	Salt and Nutrient Monitoring Locations	4-2
4.2	Salt and Nutrient Monitoring Results and Evaluation	4-3
4.3	Implementation Measures to Manage Salt and Nutrient Loading	4-7

Section 5 Summary of Findings

Section 6 Future Activities

Future Activities	
-------------------	--

Section 7 References

References7	7-	1
-------------	----	---

List of Tables

- Table 1.1Construction Information for WRD Nested Monitoring Wells
- Table 1.2Construction Information for Wells Used to Prepare Figures 2.1 and 2.2
- Table 2.1Groundwater Elevations, WY 2019-2020
- Table 3.1Central Basin Water Quality Results
- Regional Groundwater Monitoring WY 2019-2020
- Table 3.2West Coast Basin Water Quality Results
 - Regional Groundwater Monitoring WY 2019-2020
- Table 3.3Water Quality Results For Per-and Polyfluoroalkyl Substances (PFAS) Detected in
RGWMP Monitoring Wells In 2019 And 2020
- Table 3.4Quality of Replenishment Water
- Table 3.5Major Mineral Water Quality Groups

List of Figures

- Figure 1.1 Water Replenishment District Service Area
- Figure 1.2 Nested Wells versus Production Wells for Aquifer–Specific Data
- Figure 1.3 WRD Nested Monitoring Wells
- Figure 1.4 Idealized Geologic Cross Section AA'
- Figure 1.5 Idealized Geologic Cross Section BB'
- Figure 2.1 Groundwater Elevation Contours Fall 2020
- Figure 2.2 Changes in Groundwater Elevations Fall 2019 Fall 2020
- Figure 2.3 Water Levels in WRD Key Nested Monitoring Well–Rio Hondo #1
- Figure 2.4 Water Levels in WRD Key Nested Monitoring Well–Pico #2
- Figure 2.5 Water Levels in WRD Key Nested Monitoring Well–Norwalk #2
- Figure 2.6 Water Levels in WRD Key Nested Monitoring Well–Huntington Park #1
- Figure 2.7 Water Levels in WRD Key Nested Monitoring Well–South Gate #1
- Figure 2.8 Water Levels in WRD Key Nested Monitoring Well–Willowbrook #1
- Figure 2.9 Water Levels in WRD Key Nested Monitoring Well–Long Beach #6
- Figure 2.10 Water Levels in WRD Key Nested Monitoring Well–Seal Beach #1
- Figure 2.11 Water Levels in WRD Key Nested Monitoring Well–Whittier #1
- Figure 2.12 Water Levels in WRD Key Nested Monitoring Well–PM-4 Mariner
- Figure 2.13 Water Levels in WRD Key Nested Monitoring Well–Carson #1
- Figure 2.14 Water Levels in WRD Key Nested Monitoring Well–Manhattan Beach #1
- Figure 2.15 Water Levels in WRD Key Nested Monitoring Well–Wilmington #2
- Figure 3.1 TDS Concentrations in Groundwater:
- WRD Nested Monitoring Wells Water Year 2019 2020
- Figure 3.2 TDS Concentrations from Groundwater Production Wells
- Figure 3.3 Iron Concentrations in Groundwater:
- WRD Nested Monitoring Wells, Water Year 2019 2020
- Figure 3.4 Iron Concentrations from Groundwater Production Wells
- Figure 3.5 Manganese Concentrations in Groundwater:
- WRD Nested Monitoring Wells, Water Year 2019 2020
- Figure 3.6 Manganese Concentrations from Groundwater Production Wells

Figure 3.7	Chloride Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.8	Chloride Concentrations from Groundwater Production Wells
Figure 3.9	Nitrate Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.10	Nitrate Concentrations from Groundwater Production Wells
Figure 3.11	TCE Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.12	TCE Concentrations from Groundwater Production Wells
Figure 3.13	PCE Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.14	PCE Concentrations from Groundwater Production Wells
Figure 3.15	Arsenic Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020–
Figure 3.16	Arsenic Concentrations from Groundwater Production Wells
Figure 3.17	Perchlorate Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.18	Perchlorate Concentrations from Groundwater Production Wells
Figure 3.19	Hexavalent Chromium Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.20	Hexavalent Chromium Concentrations from Groundwater Production Wells
Figure 3.21	1,4-Dioxane Concentrations in Groundwater:
	WRD Nested Monitoring Wells, Water Year 2019 – 2020
Figure 3.22	1,4-Dioxane Concentrations from Groundwater Production Wells
Figure 3.23	PFOS Concentrations in Groundwater:
5. 2.24	WRD Nested Monitoring Wells, January 2019 through September 2020
Figure 3.24	PFOS Concentrations from Groundwater Production Wells, January 2019 through
D: 2.25	September 2020
Figure 3.25	PFOA Concentrations in Groundwater:
Б. 226	WRD Nested Monitoring Wells, January 2019 through September 2020
Figure 3.26	PFOA Concentrations from Groundwater Production Wells, January 2019 through
Г' 41	September 2020
Figure 4.1	TDS and Chloride in WRD Key Nested Monitoring Well–Rio Hondo #1
Figure 4.2	TDS and Chloride in WRD Key Nested Monitoring Well–Pico #2
Figure 4.3	TDS and Chloride in WRD Key Nested Monitoring Well–Norwalk #2
Figure 4.4	TDS and Chloride in WRD Key Nested Monitoring Well–Huntington Park #1
Figure 4.5	TDS and Chloride in WRD Key Nested Monitoring Well–South Gate #1
Figure 4.6	TDS and Chloride in WRD Key Nested Monitoring Well–Willowbrook #1
Figure 4.7	TDS and Chloride in WRD Key Nested Monitoring Well–Long Beach #6
Figure 4.8 Figure 4.9	TDS and Chloride in WRD Key Nested Monitoring Well–Seal Beach #1
Figure 4.9 Figure 4.10	TDS and Chloride in WRD Key Nested Monitoring Well–Whittier #1 TDS and Chloride in WRD Key Nested Monitoring Well–PM-4 Mariner
Figure 4.10 Figure 4.11	TDS and Chloride in WRD Key Nested Monitoring Well–PM-4 Mariner TDS and Chloride in WRD Key Nested Monitoring Well–Carson #1
Figure 4.11 Figure 4.12	TDS and Chloride in WRD Key Nested Monitoring Well–Carson #1 TDS and Chloride in WRD Key Nested Monitoring Well–Manhattan Beach #1
Figure 4.12 Figure 4.13	TDS and Chloride in WRD Key Nested Monitoring Well–Mannattan Beach #1 TDS and Chloride in WRD Key Nested Monitoring Well–Wilmington #2
1 Igule 4.13	125 and Chlorad in which key hesida monitoring well-willington $#2$

GLOSSARY OF ACRONYMS

AF AFFF ARC	acre-feet aqueous film forming foam Albert Robles Center for Water Recycling and Environmental Learning
AWTF	Advanced Water Treatment Facility
BGS	below ground surface
BOP	bottom of perforation
CASGEM	California Statewide Groundwater Elevation Monitoring
CECs	chemicals of emerging concern
CSDLAC	County Sanitation Districts of Los Angeles County
CBWCB	Central Basin and West Coast Basin
CBPA	Central Basin Pressure Area
DDW	State Water Resources Control Board, Division of Drinking Water
DME	Designated Monitoring Entity
DWR	California Department of Water Resources
ELWRF	Edward C. Little Water Recycling Facility
ESR	Engineering Survey and Report
GIS	Geographic Information System
GPS	Global Positioning System
GRIP	Groundwater Reliability Improvement Program
LACDPW	Los Angeles County Department of Public Works
LAX	Los Angeles International Airport
MCL	Primary Maximum Contaminant Level
mg/L	milligram per liter
μg/L	microgram per liter
MSL	mean sea level
MWD	Metropolitan Water District of Southern California
NAVD88	North American Vertical Datum of 1988
NDMA	N-nitrosodimethylamine
ng/L	nanogram per liter
NL	Notification Level
OEHHA	Office of Environmental Health Hazard Assessment

GLOSSARY OF ACRONYMS (continued)

PCE	tetrachloroethylene
PDF	Portable Document Format
PFAS	perfluoroalkyl and polyfluoroalkyl substances
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
PHG	Public Health Goal
RGWMP	Regional Groundwater Monitoring Program
RGWMR	Regional Groundwater Monitoring Report
RL	Response Level
SMCL	Secondary Maximum Contaminant Level
SNMP	Salt and Nutrient Management Plan
SWRCB	State Water Resources Control Board
TCE	trichloroethylene
TDS	total dissolved solids
TIWRP	Terminal Island Water Reclamation Plant
TOP	top of perforation
UCMR	Unregulated Contaminant Monitoring Rule
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
WBMWD	West Basin Municipal Water District
WQO	Water Quality Objective
WRD	Water Replenishment District
WRP	Water Reclamation Plant
WY	Water Year

SECTION 1 INTRODUCTION

The Water Replenishment District (WRD or the District) manages groundwater replenishment and water quality activities for the Central Basin and West Coast Basin (CBWCB) in southern Los Angeles County (Figure 1.1). WRD's service area encompasses most of the Central Basin and nearly all of the West Coast Basin. Our mission is to protect and preserve high-quality groundwater in the basins through innovative, cost-effective, and environmentally sensitive management practices for the benefit of residents and businesses within WRD's service area.

As part of accomplishing this mission, WRD maintains a thorough and current understanding of groundwater conditions in its service area and strives to predict and prepare for future conditions. This is achieved through groundwater monitoring, modeling, and planning, which provide the necessary information to determine the "health" of the basins. This information in turn provides WRD, the groundwater pumpers in WRD's service area, other interested stakeholders, and the public with the knowledge necessary for responsible water resources planning and management. Each year WRD compiles the most recently collected information into a Regional Groundwater Monitoring Report (RGWMR) that presents the most current understanding of conditions in the basins; the RGWMR is just one of the efforts by WRD to fulfill its mission.

1.1 BACKGROUND OF THE REGIONAL GROUNDWATER MONITORING PROGRAM

Since its formation in 1959, WRD has been actively involved in groundwater replenishment, water quality monitoring, contamination prevention, data management, and data publication. Historical over-pumping of the CBWCB caused overdraft, seawater intrusion, and other groundwater management problems related to supply and quality. Adjudication of the basins in the early 1960s set a limit on allowable groundwater extractions in order to control the over-pumping. Concurrent with adjudication, WRD was

formed to address issues of groundwater recharge and groundwater quality. Following its inception, WRD implemented the Regional Groundwater Monitoring Program (RGWMP) as a program designed to track groundwater levels and groundwater quality in the WRD service area in the effort to ensure the sustainability of groundwater as a reliable resource.

Prior to 1995, WRD relied heavily upon groundwater data collected, interpreted, and presented by other entities such as the Los Angeles County Department of Public Works (LACDPW), the California Department of Water Resources (DWR), and the private sector for understanding basin conditions. However, these data were collected primarily from production wells, which are typically screened across multiple aquifers to maximize water inflow. The result is a mixing of waters from different aquifers into a single well casing, causing an averaging of water levels and water quality.

In order to obtain more accurate data for specific aquifers from which to infer localized water level and water quality conditions, depth-specific (nested) monitoring wells that tap discrete aquifer zones are necessary. **Figure 1.2** illustrates the capabilities of nested monitoring wells to assess individual aquifers compared to typical production wells.

Data for the RGWMRs are provided for a Water Year (WY), which occurs from October 1 to September 30. During WY 1994-95, WRD and the United States Geological Survey (USGS) began a cooperative study to improve the understanding of the geohydrology and geochemistry of the CBWCB. The initial study was documented in USGS Water Resources Investigations Report 03-4065, *Geohydrology, Geochemistry and Ground-Water Simulation-Optimization of the Central Basin and West Coast Basin, Los Angeles County, California* (Reichard et al., 2003). The study provides the nucleus of WRD's ongoing RGWMP. In addition to compiling existing available data, that study recognized that the sampling of production wells did not adequately characterize the layered multiple aquifer systems of the CBWCB. The study focused on new data collection through drilling and construction of nested groundwater monitoring wells and conducting depth-specific groundwater monitoring.

Figure 1.3 is a District map showing the locations of wells in WRD's nested monitoring well network that are used in the RGWMP. Currently, there are 335 wells at 60 locations; a few of these wells are used exclusively to monitor groundwater elevations, but most are used to monitor both groundwater elevations and water quality within the WRD service area. A listing and well construction details for the WRD nested wells used in the RGWMP are presented in **Table 1.1**. Listings and well construction details for other wells used to prepare the groundwater elevation contour and groundwater elevation change maps that are included in this report are presented in **Table 1.2**.

An Annual Report on the Results of Water Quality Monitoring (Annual Report) was published by WRD each year for WYs 1972-73 through 1994-95 and was based on a basinwide monitoring program outlined in the Report on Program of Water Quality Monitoring (Bookman-Edmonston Engineering, Inc., January 1973). The latter report recommended a substantial expansion of the then-existing program, particularly the development of a detailed and intensive program for the monitoring of groundwater quality in the Montebello Forebay. The RGWMP was designed to serve as an expanded, more representative basinwide monitoring program for the CBWCB. WRD's RGWMR is published annually in lieu of the previous Annual Reports.

On November 4, 2009, the State Legislature amended the Water Code with SBx7- 6, mandating a statewide groundwater elevation monitoring program to track seasonal and long-term trends in California's groundwater basins. In accordance with this amendment, DWR developed the California Statewide Groundwater Elevation Monitoring (CASGEM) program. In October 2011, WRD was assigned as the Designated Monitoring Entity (DME) responsible for collecting and reporting CBWCB groundwater level data to CASGEM. Through the RGWMP, WRD collects groundwater level data from within its service area, tracks seasonal and long-term trends and provides that data to the CASGEM program.

1.2 CONCEPTUAL HYDROGEOLOGIC MODEL

As described above, the RGWMP has changed the focus of groundwater monitoring efforts in the WRD service area from production wells with averaged groundwater level and groundwater quality information, to a layered multiple aquifer system with individual zones of groundwater quality and groundwater levels. WRD views each aquifer as a significant component of the groundwater system and recognizes the importance of the interrelationships between aquifers. The most accepted hydrogeologic description of the basins and the names of water-bearing zones are provided in DWR document entitled Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A–Ground Water Geology (DWR, 1961). WRD generally follows the naming conventions defined in Bulletin 104; however, in some cases WRD's in-house interpretation has resulted in aquifer classifications that differ from those predicted by that report. During WY 2017-18, WRD updated its interpretation of the aquifer classifications assigned to each well so that they more closely match those of Bulletin 104. This has resulted in changes to designations at some wells from those that have been previously used and published by WRD. Table 1.1 lists the specific aquifer assigned to each well used in the RGWMP and indicates whether that designation follows Bulletin 104 or is the result of WRD's most current interpretation.

The locations of idealized geologic cross-sections A-A' and B-B' through the WRD service area are shown on **Figure 1.3**. These cross-sections are presented on **Figures 1.4** and **1.5**, respectively. These cross-sections are modified versions of cross-sections presented in Bulletin 104 and illustrate a simplified aquifer system in the CBWCB. The main potable production aquifers described in Bulletin 104 are shown, including the deeper Lynwood, Silverado, and Sunnyside aquifers of the lower Pleistocene San Pedro Formation. Other shallower aquifers, which locally produce potable water, include the Gage and Gardena aquifers of the upper Pleistocene Lakewood Formation. Also shown on the geologic sections are the aquitards separating aquifers. Throughout this report the aquifers shown on the geologic sections are referred to as discrete groundwater zones. Many references are made to the Silverado Aquifer, typically thought of as the main

producing aquifer in the CBWCB; however, substantial pumping can come from the Lynwood and Sunnyside aquifers as well.

1.3 GIS DEVELOPMENT AND IMPLEMENTATION

WRD uses a Geographic Information System (GIS) as a tool for groundwater management in its service area. Much of the GIS data was compiled during the WRD/USGS cooperative study described above in Section 1.1. The GIS links spatially related information (e.g., well locations, geologic features, cultural features, and contaminated sites) to data on well production, water quality, water levels, and replenishment amounts. WRD uses industry standard Esri ArcGIS[®] software for data analysis and preparation of spatially related information (maps and graphics tied to data).

WRD utilizes Global Positioning System (GPS) technology to determine and document the locations of basinwide production wells, nested monitoring wells, and other geographic features for use in the GIS database. During WY 2015-16, WRD updated and modernized its database so that a consistent reference surface datum is used when describing the mean sea level (MSL) elevation at each monitoring well. This update required a re-survey of the measurement reference point at each of WRD's wells relative to the North American Vertical Datum of 1988 (NAVD88) reference plane. This update resulted in adjustment for some of the "reference point elevations" that have previously been used and published by WRD. Current NAVD88 reference point elevations are listed in **Table 2.1**.

WRD is constantly updating the GIS with new data and newly acquired archives of data acquired by staff or provided by pumpers and other agencies. The GIS is a primary tool for WRD and other water-related agencies to accurately track current and past use of groundwater, track groundwater quality, and project future water demands, thus allowing improved management of the basins.

In early 2003, WRD completed the development of its Internet-based GIS and Interactive Well Search Tool, which was made available to the public for access to CBWCB

groundwater information. In 2018, a major upgrade to this site was completed to enhance its capabilities, and in November 2019 further enhancements to the site were launched. WRD's internet-based GIS can be accessed through our GIS website at <u>http://gis.wrd.org</u>. The website provides the public with access to much of the water level and water quality data contained in this report. The well information on the website can be accessed through interactive maps or text searches, and the results can be displayed in both tabular and graphical formats.

1.4 SCOPE OF REPORT

This report updates information on groundwater conditions in the WRD service area for WY 2019-2020 and discusses the status of the RGWMP. Section 1 provides an overview of the WRD and its RGWMP. Section 2 discusses district-wide groundwater levels for WY 2019-2020. Section 3 presents water quality data for the WRD nested monitoring wells, basinwide production wells, and replenishment water. Section 4 summarizes salt and nutrient management in the CBWCB and presents water quality trends for total dissolved solids (TDS) and chloride. Section 5 summarizes findings from the evaluation of data in this report. Section 6 presents future regional groundwater monitoring and related activities. Section 7 lists the references used in this report. Tables and figures are presented in separate sections at the end of the report. This current WY 2019-2020 RGWMR, along with previously published reports for past WYs, can be viewed online and downloaded in Portable Document Format (PDF) form from the WRD website at <u>http://www.wrd.org</u>.

SECTION 2 GROUNDWATER LEVELS

Groundwater levels are a direct indication of the amount of groundwater in the basins. Groundwater levels can identify areas of recharge and discharge from the basins. Differences in groundwater levels suggest which way groundwater is moving so that recharge water or contaminants can be tracked. WRD uses groundwater levels to determine when additional replenishment water is required and to calculate groundwater storage changes. Groundwater levels can also be used to identify possible source areas and pathways for seawater intrusion, and to demonstrate the effectiveness of seawater barrier injection wells. Groundwater levels are dependent on both regional precipitation and on the amount of water extracted by pumping.

WRD tracks groundwater levels throughout the year by measuring the depth to water in monitoring wells and production wells located throughout its service area. Groundwater elevations are calculated by comparing depth to water measurements to the MSL elevation at the measuring point of each well. **Table 2.1** presents manual groundwater level measurements collected from the District's nested monitoring wells during WY 2019-2020. In order to capture the daily and seasonal variations in water levels, WRD has installed automatic data-logging equipment in most of the nested monitoring wells to collect water levels more frequently than practical for manual measurements. WRD also obtains water level data from cooperating entities such as pumpers, DWR, and LACDPW who measure and collect water levels from their own wells. These data are entered into WRD's GIS water level database for archiving and analysis.

From the water level database, a groundwater elevation contour map, change in groundwater elevation map, and groundwater elevation hydrographs for selected wells were prepared to aid in analysis and illustrate the current and historical groundwater conditions in the basins. These are presented and explained in the following sections.

2.1 GROUNDWATER ELEVATION CONTOURS

A contour map showing the groundwater elevations measured across the WRD service area in the deeper, main producing aquifers during the fall of 2020 is presented in **Figure 2.1**. Specific well zones used to develop the groundwater contour map are identified on **Table 2.1**. The fall 2020 Contour Map shows that in the Central Basin water levels range from highs in excess of 170 feet above MSL to lows deeper than 100 feet below MSL. The highest water levels are in the Montebello Forebay; water levels decrease to the south and west towards the Long Beach area, the Newport-Inglewood Uplift, and the Los Angeles Forebay.

In the West Coast Basin, water levels range from highs of nearly 10 feet above MSL to lows of more than 40 feet below MSL. The highest water levels occur near the West Coast Basin Seawater Intrusion Barrier: they decrease to the east where they are generally at their lowest elevations in the City of Gardena between the Charnock Fault and Newport-Inglewood Uplift, both of which are geologic structural features that partially restrict groundwater flow.

2.2 CHANGES IN GROUNDWATER LEVELS

Figure 2.2 is a groundwater level change map that illustrates the difference between groundwater levels measured in fall 2019 and those measured in fall 2020. Specific well zones used to develop the groundwater level change map are identified on **Table 2.1**. During WY 2019-2020, changes in groundwater levels across the WRD service area have been variable. Groundwater levels have increased in some areas, decreased in other areas, and have remained unchanged elsewhere.

In the Central Basin, changes in groundwater levels were variable in WY 2019-2020. Across the unconfined Montebello Forebay water levels have increased. The greatest increases in water levels are observed to the north and in close vicinity to the spreading grounds where they are as much as 17 feet higher than they were the previous

year (fall 2019). The increase in water levels becomes less pronounced moving away from the spreading grounds; along the eastern reach of the Montebello Forebay they are as much as nine feet higher than they were in fall 2019, and along the western reach they are relatively unchanged or slightly lower than they were in fall 2019. Across the unconfined Los Angeles Forebay, water levels have either decreased slightly or remain relatively unchanged from those measured in fall 2019. Water levels in the western portion of the Los Angeles Forebay are relatively unchanged from those measured in fall 2019, while those in the eastern portion have decreased by as much as about three feet. Water levels in the Whittier Area have generally increased from those measured in WY 2018-19; in the west they are as much as nine feet higher, and in the east they are relatively unchanged from those measured in fall 2019.

Water level changes were also variable across the rest of the Central Basin in WY 2019-2020. In the northern portion of the Central Basin Pressure Area (CBPA), the area between the Los Angeles and Montebello Forebays, water levels have decreased by as much as about three feet from those measured in WY 2018-19. Along the eastern border of the CBPA water levels range from nearly three feet lower in the north to more than eight feet higher in the south than they were in fall 2019. Across the southern and western portions of the CBPA, near the Newport-Inglewood Uplift, water levels range from nearly five feet higher in the south to relatively unchanged in the west compared to those measured in WY 2018-19.

In the West Coast Basin, changes in groundwater levels were variable in WY 2019-2020. In the general Carson-Wilmington-Long Beach area groundwater levels have decreased by as much as about five feet from those measured in fall 2019. In the coastal area near the Long Beach Harbor groundwater levels are relatively unchanged from those measured in WY 2018-19, while those in the San Pedro and Lomita areas have increased by nearly two feet. Water levels in the coastal plain near Torrance-Redondo Beach-Los Angeles International Airport (LAX) have remained relatively unchanged from those measured in fall 2019. In the Gardena area between the Newport-Inglewood and Charnock Faults, and in the Hawthorne area just west of the Charnock Fault, water levels have generally

increased and range from relatively unchanged to as much as four feet higher than they were in fall 2019.

District-wide, groundwater levels increased by nearly one and three-quarter feet in WY 2019-2020, although across the Montebello Forebay region water levels increased by an average of more than five feet. Overall groundwater storage gain across the District was 24,200 acre-feet (AF); 24,200 AF of that gain in storage occurred in the unconfined Montebello Forebay. There was a loss in groundwater storage in the Los Angeles Forebay of about 1,300 AF; the Whittier Area experienced a gain of 1,100 AF; and 300 AF of storage was gained in the CBPA. In the West Coast Basin there was a loss in storage of 100 AF.

2.3 GROUNDWATER LEVEL HYDROGRAPHS

WRD relies on hydrographs to track the changes in water levels in wells over time. Hydrographs reveal the seasonal fluctuations of water levels caused by variations in natural and artificial recharge, and the effects of pumping and other basin discharge. Historical hydrographs of water level data going back to the 1930s and 1940s in the Montebello Forebay, Los Angeles Forebay, CBPA, and West Coast Basin are presented in the annual WRD Engineering Survey and Report (ESR). In general, the hydrographs show that in the Central Basin, water levels were in steep decline through the 1930s and into the late 1950s as a result of excessive pumping (overdraft). Initiation of groundwater management policies in the late 1950s and early 1960s including formation of the WRD, adjudication of the basins, and installation of seawater barrier wells are evident on the hydrographs in the form of a distinct reversal in water level decline followed by a steady increase through the 1960s. Despite repeated fluctuation between periods of decreasing and increasing trends, water levels in the Central Basin have generally been relatively stable since the 1960s, although over the past several years they have been in decline. In the West Coast Basin, the hydrographs show a similar steep decline in water levels in the 1930s through the 1950s as a result of overdraft, followed by stabilization and steady increase through the 1960s that continues to the present day. ESR hydrographs are not presented in this RGWMR; however, they can be viewed in the ESR reports online and downloaded from the WRD website at <u>http://www.wrd.org</u>.

Hydrographs for WRD nested monitoring wells that plot water level measurements from individual aquifer zones against time provide WRD with a graphical method to observe changes in water level and can aid in identifying current and historic trends in aquifer conditions. The data for these annual hydrographs are collected from WRD's network of nested monitoring wells. Figures 2.3 through 2.15 are hydrographs of 13 key WRD nested monitoring wells, including three in the Montebello Forebay, one in the Los Angeles Forebay, four in the CBPA, one in the Whittier Area, and four in the West Coast Basin. The 13 key nested monitoring well locations are shown on **Figure 1.3**. These hydrographs illustrate that there can be distinct groundwater elevation differences, up to 90 feet, between adjacent aquifers at a single nested well location. The differences in elevation are influenced by variable discharge (i.e. pumping from wells), recharge (i.e. injection, percolation, or underflow) and the degree of hydraulic communication between aquifers. These hydrographs are particularly useful in identifying the zones that are in the main flow system and the zones that show the greatest depth and seasonal fluctuations in groundwater levels during the WY. A discussion of the hydrographs shown on Figures 2.3 through 2.15 is presented in the following sections.

2.4 GROUNDWATER LEVELS IN THE MONTEBELLO FOREBAY

Figure 2.3 is a hydrograph for WRD's Rio Hondo #1 key nested monitoring well located in the Montebello Forebay at the Rio Hondo Spreading Grounds. There are six individual wells (zones) that are screened, from shallowest to deepest, in the Gardena, Hollydale, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation, with depths ranging from 140 to 1,130 feet below ground surface (BGS). Because this well is located in the Montebello Forebay, where the aquifers are in general hydraulic communication with each other, water level responses in each of the aquifers are similar. Seasonal highs and lows are in response to recharge and pumping. Groundwater elevations are lowest in Zone 4, the Silverado Aquifer, suggesting that this aquifer is the most heavily pumped in the area. Water levels in Zone 4 increased by more than two feet over the previous WY.

Figure 2.4 is a hydrograph for WRD's Pico #2 key nested monitoring well located in the Montebello Forebay adjacent to the San Gabriel River and just south of the San Gabriel River Spreading Grounds. There are six individual wells (zones) that are screened, from shallowest to deepest, in the Gaspur/Gage, Lynwood, Silverado, and Sunnyside (three deepest zones) Aquifers, with depths ranging from 100 to 1,200 feet BGS. Groundwater elevations are lowest in Zones 1, 2, and 3, all of which are screened in the Sunnyside Aquifer, suggesting that the Sunnyside Aquifer is the most heavily pumped in this area. Water levels in Zone 3 increased nearly four feet over the previous WY, similar to levels last observed at this location in the fall of WY 2017-18.

Figure 2.5 is a hydrograph for WRD's Norwalk #2 key nested monitoring well located in the Montebello Forebay, 3.5 miles south of the San Gabriel River Spreading Grounds. There are six individual wells (zones) that are screened in the following aquifers (from shallowest to deepest): Gardena, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation (two deepest zones), with depths ranging from 236 to 1,480 feet BGS. Norwalk #2 is the third key well representing the Montebello Forebay and is at the southern margin of the Forebay where it transitions into the CBPA. Unlike Rio Hondo #1 and Pico #2, water level responses to seasonal discharge and recharge influences are less pronounced at Norwalk #2, with seasonal swings of around 20 feet compared to the greater than 30-foot seasonal swings observed at Rio Hondo #1 and Pico #2. Groundwater elevations are deepest in Zones 3 and 4, which are both screened in the Sunnyside Aquifer, suggesting that this aquifer is the most heavily pumped in the area. The water level in Zone 3 increased by more than two feet over the previous WY, bringing it to about the level last observed here in the fall of WY 2017-18.

2.5 GROUNDWATER LEVELS IN THE LOS ANGELES FOREBAY

Figure 2.6 is a hydrograph for WRD's Huntington Park #1 key nested monitoring well located in the Los Angeles Forebay near the intersection of Slauson Avenue and Alameda Street. There are five individual wells (zones) that are screened in the following aquifers (from shallowest to deepest): Gaspur, Gage, Hollydale, Lynwood, and Silverado, with depths ranging from 114 to 910 feet BGS. Only four of the zones are shown on the hydrograph because the shallowest well (screened from 114 to 134 feet BGS in the Gaspur Aquifer) is dry. There is a large separation in water levels between Zone 4 and the three deeper zones, suggesting the presence of a low permeability aquitard(s) above Zone 3 that hydraulically isolates the Gage Aquifer from the deeper aquifers. Water levels in the deepest two zones, the Lynwood and Silverado Aquifers, are generally similar and both decreased by about one foot in WY 2019-2020 compared to the previous WY. Unlike the fluctuations between increasing and decreasing water levels typically observed in the Montebello Forebay, water levels in the Los Angeles Forebay have remained relatively stable over the past 20 years.

2.6 GROUNDWATER LEVELS IN THE CENTRAL BASIN PRESSURE AREA

Figure 2.7 is a hydrograph for WRD's South Gate #1 key nested monitoring well, which is located in the north-central portion of the CBPA, just outside the Montebello and Los Angeles Forebays. There are five individual wells (zones) that are screened, from shallowest to deepest, in the Exposition, Lynwood, Silverado, and Sunnyside (two deepest zones) Aquifers, with depths ranging from 220 to 1,460 feet BGS. Water levels in Zones 1 through 4 generally behave similarly in response to seasonal discharge and recharge. The upper Zone 5 has much shallower water levels, shows little seasonal response, and is isolated from the aquifers below by an aquitard, resulting in the observed hydraulic separation. South Gate #1 water levels decreased by about 1.5 feet in the deepest three Aquifers and increased by more than five feet in Zone 4 from the previous WY. Water levels are relatively unchanged in Zone 5 from the previous WY but have decreased by about 20 feet over the past 15 years.

Figure 2.8 is a hydrograph for WRD's Willowbrook #1 key nested monitoring well, which is located in the CBPA, about seven miles down-gradient of the Montebello Forebay. There are four individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, Silverado, and Sunnyside Aquifers, with depths ranging from 200 to 905 feet BGS. Zone 1 is screened in the deepest responding aquifer. Water levels in the upper three zones are typically shallower than those observed in Zone 1. The differences in water levels between Zones 1 and 2, and between Zones 2 and 3, indicate hydraulic separation, and thus suggest the presence of aquitards that separate these zones from one another. Water levels in Zones 3 and 4 track very closely which indicates there is little hydraulic separation between them. Water levels in Zone 1 are essentially unchanged from those measured in fall 2019 and have decreased by between one and two feet in each of the overlying shallower zones. Water levels in Willowbrook #1 have generally declined over the past 20 years.

Figure 2.9 is a hydrograph for key nested monitoring well Long Beach #6 located in the southern portion of the CBPA. There are six individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation, with depths ranging from 220 to 1,510 feet BGS. Because this portion of the CBPA has multiple confined aquifers separated by substantial aquitards, and experiences heavy local seasonal pumping cycles, water level fluctuations can be larger than in other areas. For example, water levels in Zones 4 and 5 are the deepest responders; they are screened in the Silverado and Lynwood Aquifers, can rise and fall by more than 100 feet through typical seasonal cycles, and have been recorded historically at elevations ranging from highs near sea level to lows deeper than 120 feet below sea level. Water levels in Zones 4 and 5 have fluctuated dramatically due to the temporary in-lieu program where nearby production wells were turned off in WY 2019-2020; from about late fall 2019 through spring 2020, they increased by nearly 90 feet. Since spring 2020 however, they have decreased nearly 80 feet, and in fall 2020 they were observed at elevations a few feet higher than were measured in fall 2019. Water levels in

the other zones also show significant seasonal variation. **Figure 2.9** shows that water levels in all six zones generally increased slightly during WY 2019-2020.

Figure 2.10 is a hydrograph for key nested monitoring well Seal Beach #1, which is included as a key nested monitoring well for the CBPA due to its proximity inland of the Alamitos Gap Seawater Intrusion Barrier Recycled Water Project. There are seven individual wells (zones) that are screened, from shallowest to deepest, in the Artesia, Gage, Lynwood, Silverado, and Sunnyside (three deepest zones) Aquifers, with depths ranging from 60 to 1,365 feet BGS. Zone 4, screened in the Silverado Aquifer, is the deepest responding unit at Seal Beach #1. Zone 5 responds similarly to Zone 4 but draws down less during heavily pumped periods. Zones 1, 2, and 3 have historically overlain one another on the hydrograph, however measurements from Zone 2 are missing for several months this year due to equipment malfunction. Water levels in Zones 1 and 3 have increased by about five feet over WY 2019-2020. Zones 6 and 7 show a smaller seasonal response than the five deeper zones, with groundwater elevations at or slightly below sea level, suggesting partial isolation from the lower aquifer systems. Three months of measurements are also missing from Zone 4 due to equipment malfunction; however, groundwater levels measured in late June 2020 are about 15 feet higher than they were in fall 2019.

2.7 GROUNDWATER LEVELS IN THE WHITTIER AREA

The Whittier Area of the Central Basin extends from the Puente Hills south and southwest to the Santa Fe Springs-Coyote Hills uplift. The western boundary is an arbitrary line separating the Whittier Area from the Montebello Forebay and the eastern boundary is the Orange County line. **Figure 2.11** is a hydrograph from WRD's Whittier #1 key nested monitoring well located in the eastern part of the Whittier Area. There are five individual wells (zones) that are screened, from shallowest to deepest, in the Jefferson, Silverado, and Sunnyside Aquifers, and the Pico Formation (two deepest zones), with depths ranging from 200 to 1,200 feet BGS. Groundwater levels in the Whittier Area do not show a seasonal fluctuation typical of other areas of the Central Basin and adjacent

Montebello Forebay Area, which suggests limited groundwater discharge and recharge. Zones 1 through 4 have similar groundwater elevations and have tracked very closely over time while the Zone 5 groundwater elevation is more than 80 feet higher than in the deeper zones suggesting substantial isolation by an aquitard(s). The Whittier #1 hydrograph indicates that groundwater levels in the Whittier Area have remained relatively unchanged over WY 2019-2020 and have decreased about 10 feet over the past 20 years.

2.8 GROUNDWATER LEVELS IN THE WEST COAST BASIN

Figure 2.12 is a hydrograph for WRD's PM-4 Mariner key nested monitoring well, which is located in the City of Torrance, in the coastal area inland from the West Coast Basin Seawater Intrusion Barrier. There are four individual wells (zones) that are screened, from shallowest to deepest, in the Gardena, Lynwood, Silverado, and Sunnyside Aquifers, with depths ranging from 200 to 710 feet BGS. All four zones respond similarly to seasonal fluctuations. Water levels in Zone 1 (Sunnyside) are deepest and have historically been separated from Zone 2 (Silverado) water levels by one or two feet; however, over the last half of WY 2019-2020 they are within 0.25 feet of one another. Water levels in Zones 3 and 4 (Lynwood and Gardena) are both more than three feet higher than those in Zone 2. Water levels measured in each of the four zones at PM-4 Mariner in the fall of 2020 were essentially the same as those measured in the fall of 2019.

Figure 2.13 is a hydrograph for WRD's Carson #1 key nested monitoring well, which is located in the inland region of the West Coast Basin. There are four individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, and Silverado (two deepest zones) Aquifers, with depths ranging from 250 to 1,010 feet BGS. Water levels in Zone 1 track very similar to Zone 2 throughout the year and are the deep responding aquifers at this location. Zone 3 tracks similar to Zone 4. Groundwater elevations currently differ by about 25 feet between the upper two and lower two zones, which suggests the presence of a low permeability aquitard(s) between them that hydraulically isolate the shallow aquifers from the deeper ones.

Water levels in Zones 1 and 2 have decreased by about two feet over WY 2019-2020 but have generally increased about 30 feet over the past 21 years.

Figure 2.14 is a hydrograph for WRD's Manhattan Beach #1 key nested monitoring well for the West Coast Basin located one half mile inland of the West Coast Basin Seawater Intrusion Barrier. There are seven individual wells (zones) at Manhattan Beach #1 that are screened, from shallowest to deepest, in the Gage, Silverado, and Sunnyside (two zones) Aquifers, and the Pico Formation (three deepest zones), with depths ranging from 180 to 1,990 feet BGS. Zone 3 is screened in the Pico Formation and has the deepest groundwater levels, as much as 30 feet lower than Zones 1, 2, 4, and 5 which all generally track together. Water levels in Zones 6 and 7 track together and are about six to eight feet higher than those in Zones 1, 2, 4, and 5. Seasonal fluctuations are not pronounced at the Manhattan Beach #1 location and groundwater levels did not change significantly over the previous WY. Water levels in Zone 3 have increased nearly two feet over the previous WY and more than 12 feet since this well was installed in WY 2010-11.

Figure 2.15 is a hydrograph for WRD's Wilmington #2 key nested monitoring well, which is located in the West Coast Basin, inland of the Dominguez Gap Seawater Intrusion Barrier. There are five individual wells (zones) that are screened, from shallowest to deepest, in the Gage, Lynwood, Silverado (two zones), and Sunnyside Aquifers with depths ranging from 120 to 970 feet BGS. Water levels in Zones 1 through 4 are generally deeper and behave similarly in response to seasonal influences. The upper Zone 5 has shallower water levels and shows less seasonal change than the deeper zones suggesting hydraulic separation from them. Wilmington #2 water levels show very little change over WY 2019-2020, but they have increased by as much as 30 feet over the past 21 years.

SECTION 3

GROUNDWATER AND REPLENISHMENT WATER QUALITY

This section discusses the vertical and horizontal distribution of water quality constituents in WRD's service area based on data from WRD's nested monitoring wells, purveyors' production wells, and source waters used for CBWCB groundwater replenishment. Regional groundwater quality maps included herein depict constituents of interest to WRD and District stakeholders in the nested monitoring wells and production wells where water quality data is available.

Comparisons of water quality results to various regulatory standards are made throughout this section. A brief discussion of the regulatory standards used in the report follows. A Primary Maximum Contaminant Level (MCL) is an enforceable drinking water standard that the California Environmental Protection Agency, State Water Resources Control Board, Division of Drinking Water (DDW) establishes after health effects, risk assessment, detection capability, treatability, and economic feasibility are considered. A Secondary Maximum Contaminant Level (SMCL) is established for constituents that impact aesthetics of the water, such as taste, odor, and color, but do not impact health. A Public Health Goal (PHG) is an advisory level that is developed by the Office of Environmental Health Hazard Assessment (OEHHA) after a thorough review of health effects and risk assessment studies. A Notification Level (NL) and Response Level (RL) are nonenforceable health-based advisory levels established by the DDW based on preliminary reviews of health effects studies for which enforceable levels have not been established. NLs and RLs replaced State Action Levels effective January 1, 2005 per California Health and Safety Code Section 116455. It should be noted that constituents with NLs often are considered unregulated contaminants for which additional monitoring may be required to determine the extent of exposure before MCLs and/or PHGs are established.

3.1 QUALITY OF GROUNDWATER

The focus of this section is groundwater quality in samples collected from WRD nested monitoring wells and purveyors' production wells. Section 1 of this report described the value of data from aquifer-specific nested monitoring wells and that these data provide the most valuable insight into CBWCB groundwater quality. Groundwater samples collected from WRD's nested wells are submitted immediately after collection to a State-certified laboratory for analysis for general water quality constituents, known or suspected natural and man-made contaminants, and other select constituents of interest.

Historically, WRD has performed groundwater sampling of its nested monitoring wells on a semi-annual schedule, and over the past few decades has compiled an enormous database of analytical results. In WY 2017-18, WRD conducted an intensive review of this database specifically to determine if the frequency of sampling could be reduced at some wells without compromising its current high-quality assessment of groundwater conditions in the CBWCB. Using criteria such as the length of time a well has been in service, and the nature of concentration trends within each zone at a nested monitoring well site, WRD was able to identify 11 nested wells where the sampling frequency could be reduced from semi-annual to annual. Commencing in WY 2017-18 and continuing this WY (WY 2019-2020), semi-annual sampling was not conducted during fall sampling events at Bell Gardens #1, Carson #2, Cerritos #1, Commerce #1, Compton #2, Hawthorne #1, Lakewood #1, Long Beach #2, Long Beach #8, Norwalk #1 and Whittier #2. However, annual sampling was conducted at those wells each year during the spring sampling events. This reduction in sampling will produce a net cost savings without sacrificing the quality of data provided by WRD. As the quantity of data from each nested well site continues to increase, WRD will periodically review that data and where conditions allow, will reduce the sampling frequency at additional nested well sites. WRD will closely monitor the data collected from the reduced frequency wells to assure that conditions that allowed their reductions still exist; if they do not, sampling will be resumed on a semi-annual schedule.

Table 3.1 presents water quality analytical results from 34 of WRD's 35 nested monitoring wells (195 of 201 individual well zones) in the Central Basin during WY 2019-2020. One of WRD's Central Basin nested wells, South Gate #2 (6 individual well zones), was not sampled in WY 2019-2020 due to access restraints related to the COVID-19 pandemic. Table 3.2 presents water quality analytical results from 22 WRD nested monitoring wells (112 individual well zones) in the West Coast Basin during WY 2019-2020. results of detected constituents analyzed during Table 3.3 presents the the 2019 and 2020 sampling events for per- and polyfluoroalkly substances (PFAS) from readily available WRD nested monitoring wells (56 nested wells, 307 individual well zones) in the CBWCB. Complementing the data from the nested monitoring well network, data for CBWCB production wells were obtained from the DDW based on results submitted by purveyors for their DDW Title 22 drinking water compliance.

Water quality maps for nested monitoring wells for WY 2019-2020, and production wells for the three-year period spanning 2017-2020, are presented herein for 11 water quality constituents (**Figures 3.1 – 3.22**). The 11 constituents include total dissolved solids (TDS), iron, manganese, chloride, nitrate, trichloroethylene (TCE), tetrachloroethylene (PCE), arsenic, perchlorate, hexavalent chromium, and 1,4-dioxane. Water quality maps have also been prepared for nested monitoring wells and production wells illustrating the maximum concentration of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) detected between January 2019 and September 2020 PFAS sampling (**Figures 3.23 - 3.26**). The maps illustrate areal and vertical differences in water quality and compare the aquiferspecific water quality data from WRD's nested monitoring wells to the averaged water quality data collected from purveyors' production wells.

3.1.1 Total Dissolved Solids (TDS)

TDS is a measure of the total mineralization of water and is indicative of general water quality. In general, the higher the TDS, the less desirable a given water supply is for beneficial uses. The SMCL for TDS ranges from 500 milligrams per liter (mg/L), which is the recommended level, to an upper level of 1,000 mg/L, and to 1,500 mg/L, which is

the level allowed for short-term use. WRD uses the 1,000 mg/L upper level SMCL for water quality comparisons and analyses.

WRD nested monitoring well data for WY 2019-2020 indicate relatively low TDS concentrations for groundwater in the producing aquifers of the Central Basin. As shown on **Figure 3.1**, in the Central Basin, TDS was detected in WRD nested monitoring wells at concentrations above the SMCL in 20 out of 195 individual well zones (10%). In the West Coast Basin, TDS was detected in WRD nested monitoring wells at concentrations above the SMCL in 20 out of 195 individual wells at concentrations above the SMCL in WRD nested monitoring wells at concentrations above the SMCL in 34 out of 112 individual well zones (30%). Elevated TDS concentrations in the West Coast Basin were observed along the coast from Redondo Beach to LAX, in the Torrance area, Inglewood area, and Dominguez Gap area.

Figure 3.2 presents DDW water quality data for the maximum TDS detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. In the Central Basin, TDS was not detected above the Upper Level SMCL of 1,000 mg/L in any of the 211 production wells sampled for TDS during this period. In the West Coast Basin, TDS was detected at concentrations above the SMCL in four out of 28 production wells (14%). The elevated TDS levels detected in the West Coast Basin may be caused by seawater intrusion, connate brines, or perhaps oil field brines.

3.1.2 Iron

Iron occurs naturally in groundwater. Sources for iron in the water supply are both natural and man-made. Iron is leached from sediments in subsurface aquifers and steel pipes used for construction of water wells and distribution systems. Sufficient concentrations of iron in water can affect its suitability for domestic or industrial purposes. Some industrial processes cannot tolerate more than 0.1 mg/L iron. The SMCL for iron in drinking water is 0.3 mg/L. High concentrations of iron in water can stain plumbing fixtures and clothing, encrust well screens, clog pipes, and may impart a salty taste. While these problems are recognized, iron is considered an essential nutrient, important for human health, and does not pose significant health effects except in special cases.

Nested monitoring well data do not indicate iron to be a widespread water quality problem in groundwater in the WRD service area. As shown on **Figure 3.3**, in the Central Basin, iron was detected in WRD nested monitoring wells at concentrations above the SMCL of 0.3 mg/L in 14 out of 195 individual well zones (7%). In the West Coast Basin, iron was detected in WRD nested monitoring wells at concentrations above the SMCL in 16 out of 112 individual well zones (14%).

Figure 3.4 presents DDW water quality data for the maximum iron detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. In the Central Basin, iron was detected at concentrations above the SMCL of 0.3 mg/L in 17 out of 217 production wells (8%). In the West Coast Basin, iron was detected at concentrations above the SMCL in eight out of 32 production wells (25%).

3.1.3 Manganese

Manganese is naturally occurring and in high concentrations may be objectionable in water in the same manner as is iron. Stains caused by manganese are black and are more unsightly and harder to remove than those caused by iron. While manganese is considered an essential nutrient for human health at low levels, an SMCL of 50 micrograms per liter (μ g/L) is established for manganese due to its undesirable aesthetic qualities; manganese also has an NL of 500 μ g/L.

Manganese concentrations in the WRD nested monitoring wells exhibit widespread vertical and horizontal variations across the WRD service area. In the southeast portion of the Central Basin, elevated manganese typically occurs in shallower aquifers above the Silverado producing zones. In the northern portion of the Central Basin, manganese is present in shallow zones, the Silverado zones, and the deeper zones. As shown in **Figure 3.5**, in the Central Basin nested well sites, manganese concentrations exceed the SMCL of 50 μ g/L in 55 out of 195 individual well zones (28%), and in three of those 55 zones (5%) manganese was detected at concentrations above the NL of 500 μ g/L. In West Coast Basin nested well sites, manganese was detected at concentrations above the

SMCL in 50 out of 112 individual well zones (45%), and in six of those 50 zones (12%) it was detected at concentrations above the NL.

Figure 3.6 presents DDW water quality data for the maximum manganese detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. Manganese was detected in Central Basin production wells at concentrations above the SMCL of 50 μ g/L in 42 out of 216 production wells (19%), and in two of those 42 wells (5%) manganese was detected at concentrations above the NL of 500 μ g/L. Manganese was detected in West Coast Basin production wells at concentrations above the SMCL in 18 out of 32 production wells (56%) but was not detected at concentrations above the NL in any of those 32 wells.

3.1.4 Chloride

Chloride at elevated levels causes water to taste salty and it is the characteristic constituent used to identify seawater intrusion. The recommended SMCL for chloride is 250 mg/L with an upper SMCL of 500 mg/L, and a short term SMCL of 600 mg/L.

Figure 3.7 presents water quality data for chloride in WRD nested monitoring wells in the WRD service area during WY 2019-2020. In the Central Basin, with only a few exceptions all 34 nested well sites generally have low chloride concentrations. As shown on Figure 3.7, chloride was detected in WRD nested monitoring wells in the Central Basin at concentrations above both the upper SMCL of 500 mg/L and the short term SMCL of 600 mg/L in five out of 195 individual well zones (3%). In the West Coast Basin, chloride was detected in WRD nested monitoring wells at concentrations above the upper SMCL of 500 mg/L in 26 out of 112 individual well zones (23%); in 25 of those 26 individual well zones (96%) chloride was at a concentration above the short term SMCL of 600 mg/L.

Figure 3.8 presents DDW water quality data for the maximum chloride detection in production wells in the WRD service area for a three-year period spanning WYs 2017-2020. Chloride was not detected above the upper SMCL of 500 mg/L in any

of the 211 Central Basin production wells sampled for chloride during this period. In the West Coast Basin, four of the 28 (14%) production wells tested, all of which are located on the west side of the basin near the coast, had chloride concentrations above the short term SMCL of 600 mg/L.

3.1.5 Nitrate

MCLs were established by DDW for two forms of nitrogen in drinking water, nitrate and nitrite. Nitrate (measured as nitrate) has an MCL of 45 mg/L, which corresponds to 10 mg/L of nitrate as nitrogen. Nitrite (measured as nitrogen) has an MCL of 1 mg/L. The combined total of the nitrate and nitrite, measured as total nitrogen, has an MCL of 10 mg/L. These constituents are regulated because they present possible acute health risks and can cause anoxia in infants. When consumed in excess of the MCLs, they reduce the uptake of oxygen causing shortness of breath, lethargy, and a bluish skin color.

Nitrate concentrations in groundwater are also a concern because their presence indicates that a degree of contamination has occurred due to the degradation of organic matter. Native groundwater typically does not contain nitrate. It can be introduced into groundwater from agricultural practices such as fertilization of crops or lawns and leaching of animal wastes. Low concentrations of nitrogen compounds, including nitrate and nitrite, are present in treated recycled water below regulatory and permitted limits and may be a source of nitrate loading to groundwater. Typically, organic nitrogen and ammonia are the initial byproducts of the decomposition of human or animal wastes. Upon oxidation, the organic nitrogen and ammonia are converted first to nitrite and then to nitrate ions in the subsurface. A portion of the nitrate and nitrite are converted to nitrogen gas and are returned to the atmosphere.

Figure 3.9 presents nitrate (as nitrogen) water quality data for nested monitoring wells in the WRD service area during WY 2019-2020. In the Central Basin, nitrate was detected in WRD nested monitoring well locations at concentrations above the MCL of 10 mg/L in two out of 195 individual well zones (1%). Both of those nitrate concentrations were detected in the shallowest zone of a nested monitoring well site; one of those nested well

sites is located in the Los Angeles Forebay, and the other is in the CBPA near the District Boundary. In general, nested monitoring wells in the immediate vicinity of the Montebello and Los Angeles Forebays typically contain nitrate at concentrations below the MCL in the shallower zones. Some wells downgradient from the Montebello Forebay have middle zones with nitrate detections below the MCL. Nested wells further downgradient from the Forebays generally do not have detectable concentrations of nitrate. In the West Coast Basin, nitrate was detected in WRD nested monitoring well locations at concentrations above the MCL in one out of 112 individual well zones (<1%).

Figure 3.10 presents DDW water quality data for the maximum nitrate detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. One of the 221 (<1%) Central Basin production wells tested for nitrate, located in the Los Angeles Forebay, contained nitrate above the MCL of 10 mg/L. None of the 30 production wells tested in the West Coast Basin for nitrate exceeded the MCL during WYs 2017-2020.

3.1.6 Trichloroethylene (TCE)

TCE is a solvent used in metal degreasing, textile processing, and dry cleaning. In addition to its multiple, acute effects on health, TCE is also classified as a probable human carcinogen. The MCL for TCE in drinking water is 5 μ g/L. If present in water, TCE can be removed easily by common treatment processes, including air stripping or vapor extraction utilizing granular activated carbon filtration media.

As shown on **Figure 3.11**, in the Central Basin TCE was detected in WRD nested monitoring well locations at concentrations above the MCL of 5 μ g/L in six out of 195 individual well zones (3%). In the West Coast Basin, TCE was detected in WRD nested monitoring well locations at concentrations above the MCL in one out of 112 individual well zones (<1%). Nested wells impacted by TCE are generally located in the northern portion of the Central Basin, within or near the Los Angeles Forebay.

Figure 3.12 presents DDW water quality data for the maximum TCE detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. As shown on Figure 3.12, in the Central Basin TCE was detected at concentrations above the MCL of 5 μ g/L in 20 out of 224 production wells (9%). Wells impacted by TCE are generally located in the northern portion of the Central Basin, within or near the Montebello and Los Angeles Forebays. In the West Coast Basin, TCE was not detected in the 31 production wells tested for TCE during WYs 2017-2020.

3.1.7 Tetrachloroethylene (PCE)

PCE (also known as tetrachloroethylene, tetrachloroethene, perc, perclene, and perchlor) is a solvent used commonly in the dry-cleaning industry, as well as in metal degreasing and textile processing. The MCL for PCE in drinking water is 5 μ g/L. In addition to its multiple acute health effects, PCE is also classified as a probable human carcinogen. If present in water, PCE can be removed easily by common treatment processes, including air stripping or vapor extraction utilizing granular activated carbon filtration media.

As shown on Figure 3.13, PCE was not detected at concentrations above the MCL of 5 μ g/L in any of the WRD nested monitoring well sites located in the CBWCB.

Figure 3.14 presents DDW water quality data for the maximum PCE detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. In the Central Basin, PCE was detected at concentrations above the MCL of 5 μg/L in 12 out of 224 production wells (5%). Production wells with detectable PCE concentrations are primarily located within the vicinity of the Los Angeles and Montebello Forebays and extend southward into the CBPA. PCE was not detected in any of the 31 West Coast Basin production wells tested for PCE.

3.1.8 Arsenic

Arsenic is an element that occurs naturally in the earth's crust and accordingly there are natural sources of arsenic, including weathering and erosion of rocks, deposition of arsenic in water bodies, and uptake of the metal by animals and plants. Consumption of food and water are the major sources of arsenic exposure for the majority of U.S. citizens. Over 90% of commercial arsenic is used as a wood preservative in the form of chromate copper arsenate to prevent dry rot, fungi, molds, termites, and other pests. People may also be exposed from industrial applications, such as semiconductor manufacturing, petroleum refining, animal feed additives, and herbicides. Arsenic is classified as a known human carcinogen by the United States Environmental Protection Agency (USEPA), and also causes other health effects, such as high blood pressure and diabetes. The DDW established an MCL of 10 μ g/L for arsenic.

Figure 3.15 presents water quality data for arsenic in WRD nested monitoring wells during WY 2019-2020. In the Central Basin, arsenic was detected in WRD nested monitoring well locations at concentrations above the MCL of $10 \mu g/L$ in 18 out of 195 individual well zones (9%). In the West Coast Basin, arsenic was detected in WRD nested well locations at concentrations above the MCL at five out of 112 individual well zones (4%).

Figure 3.16 presents DDW water quality data for the maximum arsenic detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. In the Central Basin, arsenic was detected at concentrations above the MCL of 10 μ g/L in nine out of 215 (4%) production wells. In the West Coast Basin, arsenic was not detected at a concentration above the MCL in any of the 27 production wells tested for arsenic.

3.1.9 Perchlorate

Perchlorate is used in a variety of defense and industrial applications, such as rockets, missiles, road flares, fireworks, air bag inflators, lubricating oils, tanning and finishing leather, and the production of paints and enamels. Under certain conditions, perchlorate is also reported to occur naturally in groundwater (Trumpolt, 1995). When ingested, it can inhibit the proper uptake of iodide by the thyroid gland, which causes a decrease in hormones for normal growth and development and normal metabolism. In October 2007, the DDW established an MCL of 6 μ g/L for perchlorate.

Figure 3.17 presents perchlorate water quality data for WRD nested monitoring wells during WY 2019-2020. In the Central Basin, perchlorate was detected in WRD nested monitoring well locations at concentrations above the MCL of 6 μ g/L in one out of 195 individual well zones (<1%). In the West Coast Basin, perchlorate was detected in WRD nested monitoring well locations at concentrations above the MCL in one out of 112 individual well zones (<1%).

Figure 3.18 presents DDW water quality data for the maximum perchlorate detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. In the Central Basin, perchlorate was detected at concentrations above the MCL of $6 \mu g/L$ in two out of 219 production wells (<1%). Perchlorate was not detected in any of the 27 West Coast Basin production wells that were tested for perchlorate.

3.1.10 Hexavalent Chromium

Hexavalent chromium (chromium-6) and trivalent chromium (chromium-3) are two forms of the metal chromium found in groundwater. Together, these two forms of chromium are designated "total chromium". The MCL for total chromium is 50 μ g/L. In 2014 California established an MCL of 10 μ g/L for hexavalent chromium; however, on May 31, 2017, a judgement was issued by the Superior Court of California that invalidated the MCL for hexavalent chromium in drinking water. The Court has ordered the State Water Resources Control Board (SWRCB) to adopt a new MCL; in the meantime, the MCL for Total Chromium will remain in place. The SWRCB will use data collected since the standard was adopted in 2014 to help establish a new MCL; they note that it generally takes between 18 and 24 months to develop regulation. To remain consistent with prior reporting and aid in assessing concentration trends, WRD will continue to discuss hexavalent chromium results herein in terms of the historic MCL value of 10 μ g/L until a new MCL is established by the SWRCB.

Both forms of chromium occur naturally in groundwater and are also introduced to soil and groundwater through disposal practices from commercial and industrial operations. Only hexavalent chromium is considered to pose health risks. It has been known to increase cancer risk when inhaled and has recently been shown to increase the risk of cancer if ingested.

Figure 3.19 shows hexavalent chromium concentrations in WRD nested monitoring wells in the WRD service area. In the Central Basin, hexavalent chromium was detected at concentrations above the historic MCL value of $10 \mu g/L$ in three out of 195 individual well zones (2%). In the West Coast Basin, hexavalent chromium was not detected at concentrations above the MCL in any of the individual well zones.

Figure 3.20 presents DDW water quality data for the maximum hexavalent chromium detection in production wells across the WRD service area for a three-year period spanning WYs 2017-20. Hexavalent chromium was not detected at a concentration above the historic MCL of 10 μ g/L in any of the production wells that were tested for hexavalent chromium in either the Central Basin or West Coast Basin.

3.1.11 1,4-Dioxane

1,4-dioxane is a synthetic organic compound. It is used as a stabilizer for solvents (in particular 1,1,1-trichloroethane) and as a solvent itself in a number of industrial and commercial applications. 1,4-dioxane is also found in trace amounts in some cosmetic and personal care products such as detergents and shampoos. 1,4-dioxane is highly soluble in water, does not readily bind to soils, readily leaches to groundwater, and is resistant to naturally occurring biodegradation processes. EPA classifies 1,4-dioxane as a probable human carcinogen and a known irritant, and as a result it is included in the Third Unregulated Contaminant Monitoring Rule (UCMR 3). In November 2010, the SWRCB established a drinking water NL of 1 μ g/L, and a RL of 35 μ g/L, for 1,4-dioxane.

Figure 3.21 shows 1,4-dioxane concentrations in WRD nested monitoring wells in the WRD service area. In the Central Basin, 1,4-dioxane was detected at concentrations above

the NL of 1 μ g/L in 25 out of 195 individual well zones (13%). In the West Coast Basin, 1,4-dioxane was not detected above the NL of 1 μ g/L in any of the 112 individual well zones. 1,4-dioxane was not detected at concentrations above the RL of 35 μ g/L in any of the individual well zones in the CBWCB.

Figure 3.22 presents DDW water quality data for the maximum 1,4-dioxane detection in production wells across the WRD service area for a three-year period spanning WYs 2017-2020. In the Central Basin 1,4-dioxane was detected at concentrations above the NL of 1 μ g/L in 54 of the 78 (69%) production wells that were tested. In the West Coast Basin, 1,4-dioxane was not detected in any of the production wells. 1,4-dioxane was not detected at concentrations above the RL of 35 μ g/L in any CBWCB production wells.

3.1.12 Per- and Polyfluoroalkyl Substances (PFAS)

PFAS are a large group of man-made compounds including the most commonly used PFOA and PFOS. They have been used for several decades all over the world in industrial manufacturing, firefighting foams (aqueous film forming foam [AFFF]), and several consumer products including fast food wrappers, pizza boxes, stain resistant carpets, non-stick cookware (Teflon[™]), clothing (Gore-Tex ®), and fabric protectant (Scotchgard[™]). However, PFOA and PFOS have been phased out of products made in the United States since the 2000's.

In May 2016, the USEPA issued a lifetime health advisory of 70 nanograms per liter (ng/L) for the combined concentration of PFOS and PFOA. In August 2019, California (through DDW) established drinking water NLs of 5.1 ng/L for PFOA and 6.5 ng/L for PFOS, and in February 2020 the DDW established a RL of 10 ng/L for PFOA and 40 ng/L for PFOS.

In WY 2018-19, WRD began evaluating the presence of PFAS constituents in the Central Basin. In that initial assessment WRD collected samples from 20 nested monitoring wells (124 individual well zones) in and around the Montebello Forebay Spreading Grounds and analyzed them for 32 distinct PFAS constituents, including PFOS and PFOA. Two rounds

of sampling were conducted in that initial investigation to confirm the consistency of the results obtained, and the findings were reported in WRD's 2018-19 RGWMR.

In WY 2019-2020, WRD expanded the initial investigation to include PFAS analysis from its entire nested monitoring well network across the CBWCB. PFAS sampling in WY 2019-2020 focused on 18 distinct PFAS constituents, including PFOS and PFOA, each of which are considered to be likely candidates of future regulatory interest. During the first round of sampling in the spring of 2020, samples were collected from each of WRD's nested monitoring wells (58 nested wells, 318 individual well zones). During the final round of sampling in 2020, PFAS samples were collected from select nested well sites to confirm detections in spring 2020. **Table 3.3** presents the complete results for those constituents that were detected in the initial 2019 and the expanded 2020 PFAS investigations. A discussion is provided below for the two most commonly detected constituents and those with current NLs and RLs (i.e., PFOS and PFOA).

Figure 3.23 shows the maximum PFOS concentration detected within each of the 318 individual well zones that comprise WRD's nested monitoring well network during 2019 and 2020 sampling. PFOS was detected in 53 out of 318 individual well zones (17%); 41 of those 53 detections (77%) were at concentrations above the NL of 6.5 ng/L and 11 of the 53 (21%) were at concentrations above the RL of 40 ng/L.

Figure 3.24 presents DDW water quality data for the maximum PFOS detection in production wells across the WRD service area in 2019 and 2020. In the Central Basin, PFOS was detected in 61 out of 89 production wells (69%) tested; concentrations were above the NL of 6.5 ng/L in 58 out of those 61 wells (95%), and 20 wells (33%) had concentrations above the RL of 40 ng/L. In the West Coast Basin, only one of 14 wells tested (7%) had a detectable concentration of PFOS; it was below both the NL and RL.

Figure 3.25 shows the maximum PFOA concentration detected within each of the 318 individual well zones that comprise WRD's nested monitoring well network during 2019 and 2020 sampling. PFOA was detected in 51 out of 318 individual well

zones (16%); 39 of those 51 detections (76%) were at concentrations above the NL of 5.1 ng/L and 26 (51%) were at concentrations above the RL of 10 ng/L.

Figure 3.26 presents DDW water quality data received by WRD for the maximum PFOA detection in production wells across the WRD service area in 2019 and 2020. In the Central Basin, PFOA was detected in 59 out of 89 production wells (66%) tested, concentrations were above the NL of 5.1 ng/L in 52 out of those 59 wells (88%), and 38 wells (64%) had concentrations above the RL of 10 ng/L. In the West Coast Basin, PFOA was not detected in any of the 14 wells tested.

3.2 QUALITY OF REPLENISHMENT WATER

This section discusses water quality data for key water quality constituents in CBWCB replenishment water and local surface water. Although numerous constituents are monitored, the constituents discussed and reported here are the ones found to be most prevalent at elevated levels or are of current regulatory interest. The data are classified according to their sources. The key water quality parameters of this discussion were also discussed for the WRD nested monitoring wells: TDS, iron, manganese, chloride, nitrate, TCE, PCE, arsenic, perchlorate, and hexavalent chromium. Monitoring of these constituents helps to understand the general chemical nature of the recharge source, and its suitability for replenishing the groundwater basins.

3.2.1 Quality of Imported Water

Surface water is imported by the Metropolitan Water District of Southern California (MWD) to the WRD service area from the Colorado River and from Northern California via the State Water Project for potable supply and for groundwater recharge. Untreated imported water, when needed and available, is used for recharge at the Montebello Forebay Spreading Grounds. For groundwater recharge at the spreading grounds, Colorado River water deliveries have been suspended due to the potential presence of quagga mussels and there was no imported water received from the State Water Project for groundwater replenishment at the spreading grounds in WY 2019-20. Currently, treated imported water and advanced treated recycled water are injected into the three seawater intrusion

barriers. Treated imported water meets all drinking water standards and is thus suitable for direct injection. For WY 2019-20, approximately 8,984 AF of treated imported water were injected into the West Coast Basin, Dominguez Gap, and Alamitos Gap Barrier Projects combined. Average water quality data for treated and untreated imported water are presented in **Table 3.4**.

In 2019, the average TDS concentration of untreated Colorado River water was 576 mg/L and the average TDS concentration of untreated water from the State Water Project was 221 mg/L.

In 2019, average concentrations of nitrate (as Nitrogen) were below detection limits in untreated Colorado River water and the average nitrate concentration in water from the untreated State Water Project was 0.4 mg/L. Recently and historically, both Colorado River and State Water Project nitrate concentrations have remained below the MCL.

In 2019, the average iron and manganese concentrations in untreated Colorado River water were below detection limits. Manganese was not detected in untreated water obtained from the State Water Project, and the average iron concentration in that water was 237 μ g/L. Colorado River and State Water Project iron and manganese concentrations have recently and historically been below the SMCL.

The average chloride concentrations in water from the Colorado River and State Water Project have not changed significantly over the past several years. State Water Project and Colorado River chloride concentrations have historically been below the SMCL of 500 mg/L for chloride.

According to the MWD, TCE, PCE, hexavalent chromium, and perchlorate have not been detected in water from the Colorado River or State Water Project during calendar year 2019. Both Colorado River and State Water Project TCE, PCE, hexavalent chromium, and perchlorate concentrations have historically been below their respective MCLs.

3.2.2 Quality of Recycled Water

Recycled water is used for groundwater recharge in the WRD Service Area for percolation through the Montebello Forebay Spreading Grounds, which is comprised of the Rio Hondo Coastal Spreading Grounds and the San Gabriel Coastal Spreading Grounds, and for injection into the seawater barriers. In the Montebello Forebay, tertiary-treated recycled water produced by the County Sanitation Districts of Los Angeles County (CSDLAC) at their Whittier Narrows Water Reclamation Plant (WRP), San Jose Creek East WRP, San Jose Creek West WRP, and Pomona WRP facilities is diverted into the Montebello Forebay Spreading Grounds where it percolates into the subsurface to recharge underlying aquifers. The effluent from these WRPs is carefully controlled and monitored, as required by permits and other regulations, and typically shows little water quality variation over time. Average water quality data for the effluent from these WRPs is shown in **Table 3.4**.

All constituents listed have remained stable over recent WYs. Furthermore, arsenic, TCE, PCE, perchlorate, and hexavalent chromium have either not been detected or have been detected well below their respective MCLs in recycled water from the four WRPs. 1,4-Dioxane concentrations in recycled water from the Whittier Narrows, San Jose Creek West, San Jose Creek East and Pomona WRPs are all slightly at or above the NL of $1.0 \mu g/L$, but they are well below the RL of $35 \mu g/L$. N-Nitrosodimethylamine (NDMA) was detected above its NL of $10 \mu g/L$ in recycled water from the San Jose Creek West, San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek West, San Jose Creek Water from the San Jose Creek Water fro

Currently, both treated imported water and advanced treated recycled water produced by the West Basin Municipal Water District (WBMWD) Edward C. Little Water Recycling Facility (ELWRF) are injected at the West Coast Basin Barrier to prevent the intrusion of seawater and replenish the groundwater basin. Treatment processes at the ELWRF include microfiltration, reverse osmosis, ultraviolet light, advanced oxidation with hydrogen peroxide, and chemical stabilization. The advanced treated recycled water complies with all drinking water standards and thus, is suitable for direct injection. The ELWRF was expanded in September 2013 and it is expected that ultimately advanced treated recycled water will replace nearly all the imported water used for injection at the West Coast Basin Barrier. **Table 3.4** presents average water quality data for the advanced treated recycled water produced by the ELWRF.

The Alamitos Gap Seawater Intrusion Barrier currently receives both treated imported water and advanced treated recycled water produced by WRD's Leo J. Vander Lans Advanced Water Treatment Facility (Vander Lans AWTF) for injection. The Vander Lans AWTF treats disinfected tertiary effluent from the CSDLAC Long Beach WRP using microfiltration, reverse osmosis, ultraviolet light, and advanced oxidation using hydrogen peroxide. The advanced treated recycled water meets drinking water quality standards and other stringent regulations for direct injection into the aquifers. The Vander Lans AWTF was expanded in 2014 to allow additional capacity and ultimately to replace nearly all the imported water used for injection at the Alamitos Gap Seawater Intrusion Barrier. A lack of source water and system maintenance kept the Vander Lans AWTF offline for about the first half of WY 2019-2020. Since about July 2020 the facility has been consistently operational, and it is expected to run at near full capacity in the future. **Table 3.4** presents average water quality data for the advanced treated recycled water produced by the Vander Lans AWTF.

The City of Los Angeles Terminal Island Water Reclamation Plant/Advanced Water Treatment Facility (TIWRP) produces advanced treated recycled water using microfiltration, reverse osmosis, ultraviolet light, and advanced oxidation using sodium hypochlorite. This water meets drinking water quality standards and other stringent regulations for direct injection into aquifers. Currently, treated imported water is blended with advanced treated recycled water from the TIWRP for injection at the Dominguez Gap Seawater Intrusion Barrier. Expansion of the TIWRP was completed in December 2016 and included the installation of an advanced oxidation process into the treatment train. TIWRP has been consistently operational since July 2019 and through about June of 2020 has delivered approximately 80% of barrier demand. It is anticipated that ultimately the advanced treated recycled water produced there will replace nearly all the imported water used for injection into the Dominguez Gap Seawater Intrusion Barrier.

Table 3.4 presents average water quality data for the advanced treated recycled water

 produced by the TIWRP.

3.2.3 Quality of Stormwater

Stormwater infiltrates the subsurface to varying degrees throughout the WRD service area. It is also intentionally diverted from the major storm channels and used for groundwater recharge along with imported and recycled water at the Montebello Forebay Spreading Grounds. Routine stormwater quality analyses are typically performed by LACDPW and other entities; however, several of the constituents that are usually reported by LACDPW were not analyzed during WY 2018-19, and therefore those results are not available for inclusion in this report. Average stormwater quality data for those constituents that were provided by LACDPW for WY 2018-19 are presented on **Table 3.4**.

3.3 MINERAL CHARACTERISTICS OF GROUNDWATER IN THE CENTRAL BASIN AND WEST COAST BASIN

Major minerals data obtained from the WRD nested monitoring wells were used to characterize groundwater of discrete vertical zones (**Table 3.5**). Research by the USGS led to three distinct groupings of groundwater compositions. Group A groundwater is typically calcium bicarbonate or calcium bicarbonate/sulfate dominant. Group B groundwater has a typically calcium-sodium bicarbonate or sodium bicarbonate character. Group C has a sodium chloride character. A few of the WRD wells yield results that do not fall into one of the three major groups and are thus classified separately as Group D.

Groundwater from Group A likely represents recent recharge water containing a significant percentage of imported water. Group B represents older native groundwater replenished by natural local recharge. Group C represents groundwater impacted by seawater intrusion or connate saline brines. **Table 3.5** lists the groundwater group for each WRD nested monitoring well. Comparison of groundwater groups with well locations indicates that, in general, Group A groundwater is found at and immediately downgradient from the Montebello Forebay Spreading Grounds in all but the deepest zones. Group B groundwater is found farther down the flow path within the Central Basin and inland of the West Coast Basin Seawater Intrusion Barrier. Group C groundwater is generally found near the coastlines or in deeper zones. Several wells, grouped as "Other" on **Table 3.5**, exhibit a chemical character range different from Groups A, B, or C and indicate unique waters not characteristic of the dominant flow systems in the basins. The USGS is conducting ongoing research on trace element isotopes in water from these wells to identify their hydrogeologic source(s).

The major mineral compositions of water from the WRD nested monitoring wells sampled this WY have not changed substantially from previous years. It is expected that continued analysis will show gradual changes in major mineral compositions over time, as older native water is extracted from the basins and replaced by younger naturally and artificially replenished water.

SECTION 4

SALT AND NUTRIENTS IN GROUNDWATER

In February 2009, the SWRCB adopted Resolution No. 2009-0011, which established a statewide Recycled Water Policy. This Policy encourages increased use of recycled water and local stormwater for groundwater recharge across the State. It also requires local entities to develop a Salt and Nutrient Management Plan (SNMP) for each groundwater basin in California to monitor groundwater quality and any impact due to increased recycled water and stormwater recharge.

A SNMP Workplan was jointly prepared by the CBWCB stakeholders and approved by the Los Angeles Regional Water Quality Control Board in December 2011. The SNMP for the CBWCB was finalized February 12, 2015 and adopted in July 2015. The full text of the "2015 Salt Nutrient Management Plan – 2015" can be found at <u>http://www.wrd.org/content/other-reports</u>

The objective of the SNMP is to manage salts and nutrients from all sources "... on a basin-wide or watershed-wide basis in a manner that ensures attainment of water quality objectives and protection of beneficial uses." Future groundwater quality and assimilative capacity were calculated based on predicted salt and nutrient loading through 2025 in the CBWCB. Accordingly, current and proposed projects through 2025 were identified and used to develop strategies to manage salt and nutrient loading. The SNMP included the following:

- Stormwater and Recycled Water Use/Recharge Goals and Objectives,
- Characterization of the Hydrogeologic Conceptual Model/Water Quality,
- Estimation of Current and Future Salt and Nutrient Loading,
- A Basin-Wide Water Quality Monitoring Plan,
- Estimation of Salt and Nutrient Assimilative Capacity,
- An Anti-degradation Analysis,
- Implementation Measures to Manage Salt and Nutrient Loading, and
- California Environmental Quality Act analysis of the SNMP.

WRD's RGWMP was used to develop the SNMP monitoring program. The groundwater data evaluated in the annual RGWMRs provide an annual assessment of salt and nutrients in groundwater. In addition to the water quality maps generated and discussed in Section 3, historical trend graphs at key monitoring well locations, as described in the following sections, were used to assess salt and nutrient concentrations in groundwater.

4.1 SALT AND NUTRIENT MONITORING LOCATIONS

As discussed in the SNMP, TDS, chloride, and nitrate were identified as the most appropriate indicators of salt and nutrients in the CBWCB. These constituents, as well as other constituents of concern identified in the SNMP, are monitored in the WRD nested monitoring wells along with production wells located throughout the CBWCB.

As part of the SNMP monitoring program, 13 key monitoring well locations in the CBWCB were selected to evaluate past and current salt and nutrient concentrations in groundwater with respect to applicable water quality objectives (WQOs). As established in the Basin Plan, the WQO for TDS in the Central Basin CBWCB is 700 mg/L and in the West Coast Basin it is 800 mg/L. The WQO for chloride in the Central Basin is 150 mg/L and 250 mg/L in the West Coast Basin. The MCL/WQO for nitrate (as nitrogen) is 10 mg/L in both the Central Basin and the West Coast Basin.

In accordance with the statewide Recycled Water Policy, the 13 selected nested well locations are in the most critical areas of the basins, based on their proximity to water supply wells and groundwater recharge projects that utilize recycled water, including the seawater intrusion barriers (Alamitos Gap Barrier, Dominguez Gap Barrier, and West Coast Basin Barrier) and the Montebello Forebay Spreading Grounds. There are three nested well locations in the Montebello Forebay, one in the Los Angeles Forebay, four in the CBPA, one in the Whittier Area, and four in the West Coast Basin. Monitoring locations in the Montebello Forebay and Los Angeles Forebay target groundwater where connectivity with adjacent surface waters is possible.

The 13 key nested well locations are shown as a different symbol set on **Figure 1.3**. These locations include 69 individual monitoring zones, screened in specific CBWCB aquifers. The depths and aquifer designation for these key monitoring wells are provided in **Table 1.1**. WRD is the entity, designated by the SWRCB, responsible for collecting TDS, chloride, and nitrate samples (on a semi-annual basis) from these nested wells.

4.2 SALT AND NUTRIENT MONITORING RESULTS AND EVALUATION

Concentrations of salt and nutrients have been and continue to be closely monitored in all WRD nested monitoring wells and purveyors' production wells and results are discussed in **Section 3**. Concentrations of TDS, chloride, and nitrate (as nitrogen) for all WRD nested wells sampled during WY 2019-2020 are shown on maps (**Figures 3.1, 3.7, and 3.9**, respectively) and are summarized along with other monitored constituents identified in **Tables 3.1** and **3.2**. TDS, chloride, and nitrate (as nitrogen) concentrations in production wells, sampled during WYs 2017-2020 are presented on maps (**Figures 3.2, 3.8**, and **3.10** respectively). Trends for TDS and chloride concentrations at the 13 key well locations discussed above in Section 4.1 are plotted on graphs and compared to SMCLs and WQOs (**Figures 4.1** through **4.13**). Nitrate generally has not been detected in the monitoring wells, or it has been detected only at concentrations significantly below the MCLs and WQOs, and thus, trend graphs for nitrate have not been prepared. However, nitrate continues to be monitored as part of the RGWMP and is reported in **Section 3** of the annual RGWMRs.

For the Montebello Forebay, TDS and chloride concentration trends for the key well locations Rio Hondo #1 (six zones), Pico #2 (six zones), and Norwalk #2 (six zones) are presented on **Figures 4.1** through **4.3**, respectively.

- At Rio Hondo #1, TDS and chloride concentrations have historically been and remain below the WQOs and SMCLs.
- At Pico #2, TDS and chloride concentrations have historically been and remain below the SMCLs and WQOs, with a one-time exception in the shallow zone at Pico #2, where chloride concentrations were detected during the fall 2018 sampling

round at the WQO of 150 mg/L. Zone 4 at Pico #2 shows a very slightly increasing trend in chloride concentration over the past several years, but it remains below the WQO.

• At Norwalk #2, TDS and chloride concentrations have historically been and remain below the WQOs and SMCLs.

For the Los Angeles Forebay, the key well is Huntington Park #1 (four zones). TDS and chloride concentration trend graphs are shown on **Figure 4.4**.

• At Huntington Park #1, the deeper two zones show stable trends for TDS and chloride at concentrations below the WQOs and SMCLs. The shallower two zones indicate a relatively stable trend in chloride concentrations that are below both the WQO and SMCL. TDS concentrations in the shallower two zones have increased slightly since the wells were first installed. Over the past 10 years TDS concentrations in the shallowest zone (Zone 4) are consistently above the WQO of 700 mg/L, and TDS concentrations in Zone 3 fluctuate just above and below the WQO. TDS concentrations in both of these shallow zones remain below the SMCL of 1,000 mg/L.

For the CBPA, key wells include South Gate #1 (five zones), Willowbrook #1 (four zones), Long Beach #6 (six zones), and Seal Beach #1 (seven zones). TDS and chloride trends are shown on **Figures 4.5** through **4.8**, respectively.

- At South Gate #1, the four deeper zones show TDS and chloride concentrations at relatively consistent values below the SMCLs and WQOs. TDS and chloride concentrations in Zone 5 of South Gate #1 have increased somewhat since initial sampling but have remained relatively stable over the past 15 years and are below both the WQOs and SMCLs.
- At Willowbrook #1, all four zones show stable trends in TDS and chloride concentrations and are at values well below both the WQOs and SCMLs.
- At Long Beach #6, all six zones show stable chloride trends with concentrations well below both the WQO and SMCL. TDS concentrations in Zones 3, 4, 5 and 6 are stable and below both the WQO and SMCL. In Zone 1, the deepest zone of

Long Beach #6, TDS is typically detected close to the WQO of 700 mg/L. TDS concentrations in Zone 2 fluctuate by as much as 50% with historic highs near the WQO; however, over the past five years TDS concentrations have stabilized somewhat in Zone 2 and show a decreasing trend.

• At Seal Beach #1, the deeper six zones have historically contained TDS and chloride at concentrations below the WQOs and SMCLs; however, chloride concentrations in Zone 5 have increased over the past four years and have been measured at concentrations above the WQO, but below the SMCL, for the past two years. TDS and chloride concentrations in Zone 7 increased for several years after the wells were first installed; however, concentrations of both constituents have since stabilized somewhat. TDS and chloride concentrations in Zone 7 are both at values well above the WQOs and SCMLs and are likely due to the effects of seawater intrusion.

For the Whittier Area, represented by key well Whittier #1 (five zones), TDS and chloride trends are shown on **Figure 4.9**.

• At Whittier #1, TDS concentrations in Zones 4 and 5 have been generally stable since the wells were installed and are below both the WQO and SMCL. TDS concentrations in Zones 1, 2, and 3 have historically exceeded the WQO and SMCL; however, TDS concentrations in Zones 1 and 2 have remained stable, and in Zone 3 after increasing for several years, TDS concentrations have remained stable for the past three years. Chloride concentrations in Zones 4 and 5 have been below both the WQO and SMCL since the wells were installed. Chloride concentrations in Zones 1, 2, and 3 have shown a stable trend since the wells were installed; however, although they have been well below the SCML, they have consistently exceeded the WQO.

For the West Coast Basin, key wells include PM-4 Mariner (four zones), Carson #1 (four zones), Manhattan Beach #1 (seven zones), and Wilmington #2 (five zones). TDS and chloride trends are presented on **Figures 4.10** through **4.13**, respectively.

- At PM-4 Mariner, Zones 1, 3, and 4 show TDS and chloride at relatively consistent concentrations below the WQOs and SMCLs. However, in Zone 2 TDS and chloride concentrations are well above the WQOs and SMCLs and both show generally increasing trends since monitoring began in 1998. These increasing concentration trends are attributed to historical seawater intrusion prior to the construction of the West Coast Basin Seawater Barrier.
- At Carson #1, all four zones contain TDS and chloride concentrations below both the WQOs and SMCLs; here the three deeper zones show relatively stable TDS and chloride concentrations, while concentrations of both constituents in the shallow Zone 4 have decreased from those observed during few years of monitoring.
- At Manhattan Beach #1, groundwater in this coastal area shows evidence of impact by seawater intrusion. TDS concentrations in five of the seven zones exceed the WQO and SMCL, and in four zones the WQO and SMCL for chloride are exceeded. TDS and chloride concentrations in all seven of the zones at Manhattan Beach #1 appear to be rather stable.
- At Wilmington #2, TDS and chloride concentrations in Zones 1 and 3 have historically been below the WQOs and SMCLs but have increased to values that for the past several years have exceeded the WQOs. In Zones 2 and 5, TDS and chloride concentrations have been consistently above both the WQOs and SMCLs; in Zone 2 they have remained relatively stable, but in Zone 5 they have decreased to values well below those detected during the first years of sampling. In Zone 4, TDS and chloride concentrations initially exceeded both the WQOs and SMCLs, but they have decreased over time to the extent that they have been below both the WQOs and SMCLs for the past several years. Concentration decreases in Zone 4 are likely due to the implementation measures discussed in Section 4.3 below.

4.3 IMPLEMENTATION MEASURES TO MANAGE SALT AND NUTRIENT LOADING

As summarized in the previous section, overall TDS and chloride concentrations are generally stable at most of the 13 key nested monitoring locations in the CBWCB. While a few individual zones show increasing trends, a comparable number show decreasing trends. Notably, TDS and chloride concentrations in the two shallowest zones at nested well location Rio Hondo #1 and the three shallowest zones at Pico #2, each of which is beneath and adjacent to the Montebello Forebay recharge basins, have generally fluctuated within the same concentration range since 1998. At the key well location in the Los Angeles Forebay, Huntington Park #1, the shallow zones have variable TDS concentrations at and above the WQO, but deeper zones do not show increasing TDS levels. In the CBPA, TDS concentrations in the shallowest zone at key well location South Gate #1 fluctuate slightly but remain relatively stable, and chloride concentrations have remained relatively stable over the past 16 years. TDS and chloride concentrations in the four lower zones are stable. Key nested monitoring well locations near the coast, including PM-4 Mariner, Manhattan Beach #1, and Seal Beach #1, have zones that show increasing TDS and chloride concentration trends that can be attributed to historical seawater intrusion. In the relatively isolated Whittier Area, historically high TDS and chloride concentrations in the middle depth zones are stable and are not expected to fluctuate in response to anticipated management practices.

As discussed in the SNMP, TDS and chloride concentrations in the Central Basin are not expected to exceed WQOs in the future, and current and proposed projects in the basin are not expected to increase salt and nutrient concentrations above the available assimilative capacity. Two notable projects in the Central Basin include the increased use of advanced treated recycled water for injection at the Alamitos Gap Seawater Intrusion Barrier and the increased use of recycled water at the Montebello Forebay Spreading Grounds through the implementation of the Albert Robles Center for Water Recycling and Environmental Learning (ARC) formerly known as the Groundwater Reliability Improvement Program (GRIP) which includes tertiary treated and advanced treated recycled waters.

In the West Coast Basin, average TDS and chloride concentrations can exceed WQOs due to historical seawater intrusion. However, these concentrations are either relatively stable or generally decreasing and are anticipated to achieve WQOs in the future due to implementation measures such as the increased use of advanced treated recycled water for injection at the West Coast Basin and Dominguez Gap Seawater Intrusion Barrier and the continued operation of the desalter wells located in Torrance.

Nitrate concentrations in the CBWCB remain low and are not expected to increase above the MCL or WQO in the future. Overall, the data show that salt and nutrient concentrations in groundwater are stable as a result of past and current groundwater management practices. Based on the existing water quality of the CBWCB and the future groundwater quality as estimated from the SNMP analysis, existing and planned implementation measures appear adequate to manage salt and nutrient loading on a sustainable basis.

SECTION 5 SUMMARY OF FINDINGS

This RGWMR was prepared by WRD to provide a comprehensive review of groundwater conditions in the WRD service area during WY 2019-2020. A summary of findings is presented below.

- Artificial replenishment activities combined with natural replenishment and controlled pumping have ensured a sustainable, reliable supply of groundwater in the WRD service area. Artificial replenishment water sources used by WRD include imported water supplied by MWD member agencies, tertiary-treated recycled water produced by the CSDLAC, and advanced treated recycled water produced by WBMWD, the City of Los Angeles, and WRD.
- Groundwater levels (heads) are monitored continuously in the WRD service area throughout the year. The WRD nested monitoring wells show clear, significant differences in groundwater elevations between the various aquifers. The water level differences in these nested wells reflect both hydrogeologic and pumping conditions in the WRD service area. Vertical head differences of up to 90 feet occur between zones above and within the producing aquifers. The greatest head differences between aquifers tend to occur in the southern area of the Central Basin (Long Beach) and the inland, eastern areas of the West Coast Basin (Gardena and Carson), while the smallest differences occur in the recharge area of the Montebello Forebay, and the southern area of the West Coast Basin (Torrance), which has merged and unconfined aquifers.
- Hydrographs and groundwater elevations measured in basinwide nested monitoring wells and key production wells indicate variable changes in groundwater elevations across the CBWCB during WY 2019-2020. In the unconfined Montebello Forebay, water levels have increased in WY 2019-2020; in the vicinity of the spreading grounds water levels are as much as 17 feet higher than they were in WY 2018-19. Across the unconfined Los Angeles Forebay, water levels have

either decreased by as much as three feet or have remained relatively unchanged from those measured in fall 2019. Water levels in the Whittier Area have generally increased from those measured in WY 2018-19; in the west they are as much as nine feet higher, and in the east, they are relatively unchanged from, those measured in fall 2019. In the CBPA, water levels have increased by as much as eight feet in some areas, have decreased by as much as three feet in other areas, and have remained relatively unchanged in other areas over WY 2019-2020.

- In the West Coast Basin water level changes have also been variable. In the general Carson-Wilmington-Long Beach area groundwater levels have decreased by as much as about five feet from those measured in fall 2019. In the coastal area near the Long Beach Harbor groundwater levels are relatively unchanged in WY 2019-2020, while those in the San Pedro and Lomita areas have increased by as much as two feet. Water levels in the coastal plain near Torrance-Redondo Beach-LAX have remained relatively unchanged from those measured in fall 2019, however along the western coast water levels have decreased slightly. In the Gardena area between the Newport-Inglewood and Charnock Faults, and in the Hawthorne area just west of the Charnock Fault, water levels have generally increased and range from relatively unchanged to as much as four feet higher than they were in fall 2019.
- District wide, groundwater levels increased by nearly one and three-quarter feet in WY 2019-2020, although across the Montebello Forebay region water levels increased by an average of more than five feet. Overall groundwater storage gain across the District was 24,200 AF; 24,200 AF of that gain in storage occurred in the unconfined Montebello Forebay. There was a loss in groundwater storage in the Los Angeles Forebay of about 1,300 AF; the Whittier Area experienced a gain of 1,100 AF; and 300 AF of storage was gained in the CBPA. In the West Coast Basin there was a loss in storage of 100 AF.
- For the RGWMP assessment of groundwater quality, WRD collected over 600 samples from its nested monitoring wells throughout the WY and obtained water quality data from potable wells in the District from the DDW database. WRD uses 11 chemical compounds to summarize overall water quality

across the district although results for over 100 compounds are present in our databases for each sample collected for the RGWMP. A discussion of the 11 constituents used follows:

- TDS concentrations for wells located in the Central Basin are relatively low, while those in the West Coast Basin are elevated in certain portions, primarily the coastal areas from Redondo Beach to LAX and the Torrance, Inglewood and Dominguez Gap areas. The elevated TDS concentrations (above the SMCL) may be caused by seawater intrusion, connate brines, or perhaps oil field brines.
- Iron is generally common at low concentrations across the WRD service area. In Central Basin nested wells, iron concentrations above the SMCL are observed in and downgradient of the Los Angeles and Montebello Forebays, while in production wells iron concentrations above the SMCL extend further downgradient from the Forebays southward into the CBPA. Across the West Coast Basin in both nested and production well sites, iron is present at concentrations above the SMCL at numerous locations.
- Manganese is very common in groundwater across the CBWCB and was detected at all of the nested monitoring wells and more than one third of the production well sites. It is present in the Central Basin at concentrations above the SMCL in samples collected from nearly 30% of the nested monitoring wells and about 20% of production wells but was only present above its NL in about 5% of either type of those wells. Manganese is even more widespread in the West Coast Basin, where it was detected above the SMCL in about 45% of nested monitoring well sites and about 55% of the production well sites. It was only detected above the NL in 12% of the nested monitoring well zones and was not detected above the NL in any of the production well sites in the West Coast Basin.
- Chloride concentrations are low in the Central Basin and in wells within the inland areas of the West Coast Basin. Some coastal areas of the West Coast Basin are impacted by seawater intrusion and thus, have high chloride concentrations in groundwater.

- Nitrate concentrations in WRD nested monitoring wells in the CBWCB are generally below the MCL. The few nested wells that have nitrate concentrations approaching or exceeding the MCL tend to be limited to the shallowest zones at a given location and are likely due either to localized surface recharge, or isolated areas of shallow impacts from industrial operations.
- TCE detections in Central Basin nested monitoring wells are restricted to within and in close proximity to the Los Angeles Forebay, but in Central Basin production wells elevated TCE concentrations are also observed within the Montebello Forebay and in wells in the vicinity and downgradient of both the Los Angeles and Montebello Forebays. In the West Coast Basin, TCE in nested monitoring wells is observed at a concentration above the MCL in just one individual well zone in the Hawthorne area, and it is not detected in any of the West Coast Basin production wells.
- PCE was not detected above the MCL in any of the Central Basin nested monitoring wells, and detections below the MCL are only observed within and in close proximity to the Los Angeles and Montebello Forebays. Elevated concentrations of PCE in Central Basin production wells are observed within and downgradient of the Los Angeles and Montebello Forebays. In the West Coast Basin, PCE was not detected in any of the nested monitoring wells or production wells.
- Arsenic is present at low concentrations in groundwater from most of the WRD nested monitoring well sites. With few exceptions, arsenic in nested monitoring wells at concentrations above the MCL is generally restricted to areas within the southeastern portion of the Central Basin and along the western area of the West Coast Basin. Arsenic is also common in Central Basin production wells; however, it was only detected at a concentration above the MCL in about 4% of the wells tested, and these wells are generally restricted to the southeastern portion of the Central Basin. In the West Coast Basin, Arsenic was detected at a concentration below the MCL in one of the 27 production wells tested.

- Perchlorate is relatively common at low concentrations in the nested monitoring wells within and downgradient of the Los Angeles and Montebello Forebays in the Central Basin but is rarely detected in West Coast Basin nested wells. Perchlorate in Central Basin production wells is restricted to within and just east of the Los Angeles Forebay; it is absent elsewhere in CBWCB production wells.
- Hexavalent chromium is present in the CBWCB at low concentrations at nearly every nested monitoring well site, but it is only found at concentrations above the historic MCL in two nested monitoring well sites, both located in the Los Angeles Forebay. In production wells, hexavalent chromium is only present at low concentrations in a few wells located within and downgradient of the Los Angeles and Montebello Forebays in the Central Basin, and it is not observed in any of the West Coast Basin production wells. Hexavalent chromium was not detected at a concentration above its historic MCL in any of the CBWCB production wells.
- 1,4-dioxane is present at concentrations above the NL in Central Basin nested monitoring and production wells east of the Los Angeles Forebay and extending southward into the CBPA, as well as within the Montebello Forebay and southward in to the CBPA adjacent to the San Gabriel River. In the West Coast Basin, 1,4-dioxane was not detected in any of the nested monitoring wells or production wells tested.
- Beginning in WY 2018-19 and culminating in WY 2019-2020, WRD completed a
 District-wide assessment for the presence of PFAS constituents in WRD nested
 monitoring wells and CBWCB production wells. Data collected from the two-year
 PFAS assessment are included in this report, as are water quality maps. PFOS and
 PFOA, two PFAS constituents for which NLs have been established, were used to
 summarize WRD's findings, they are discussed below.
 - PFOS and PFOA detections in Central Basin nested monitoring wells and production wells are generally restricted to the vicinity of the Montebello Forebay; they occur within the Montebello Forebay, immediately adjacent and to its west, as well as downgradient along the Los Angeles and San Gabriel

Rivers. In the West Coast Basin, PFOS and PFOA detections in nested monitoring wells are relatively sparse; they occur above their respective NLs in the Torrance area, and inland in the shallow zone of one nested well site in the Lawndale area. PFOS and PFOA were not detected in any of the West Coast Basin production wells that were tested.

- The water quality of key constituents in untreated imported water recharged at the Montebello Forebay Spreading Grounds and treated imported water injected at the seawater barriers remains in compliance with regulatory limits. Average TDS, iron, manganese, chloride, nitrate, and arsenic concentrations in imported water used for recharge do not exceed their respective MCLs. Meanwhile, TCE, PCE, hexavalent chromium, and perchlorate were not detected in the untreated imported water.
- The water quality of key constituents in recycled water used for recharge at the Montebello Forebay Spreading Grounds and injection at the seawater intrusion barriers complies with regulatory limits and is monitored regularly to ensure its safe use.
- A total of 13 WRD nested groundwater monitoring wells across the CBWCB are designated for salt and nutrient (specifically, TDS, chloride, and nitrate) sampling and reporting as part of the SNMP monitoring program. Overall TDS and chloride concentrations are generally stable at most of the 13 key nested monitoring locations in the CBWCB. While a few individual zones show increasing trends, a comparable number show decreasing trends. Nitrate concentrations remain below the MCL at all 13 monitoring locations.
- In the Central Basin, TDS concentrations have been generally stable but exceed the WQO in the two shallowest zones at Huntington Park #1, and they exceed both the WQO and SMCL in the three deepest zones at Whittier #1 and the shallowest zone at Seal Beach #1. Chloride concentrations have also been relatively stable but exceed the WQO and SMCL in the three deepest zones at Whittier #1 and the shallowest zone at Seal Beach #1. TDS and chloride concentrations have increased in Zone 5 at Seal Beach #1 in recent years, and chloride has been observed at concentrations in excess of the WQO in that zone for the past two years. In each of the remaining six key nested monitoring well sites located in the Central Basin,

TDS and chloride concentrations have remained relatively stable within each of the individual monitoring wells at concentrations below both the WQOs and SMCLs.

• In the West Coast Basin, average TDS and chloride concentrations exceed WQOs and SMCLs locally due to historical seawater intrusion. However, these concentrations are in general either relatively stable or are decreasing slightly and are anticipated to achieve WQOs in the future as a result of current groundwater management practices.

As shown by the data presented herein, groundwater in the WRD service area is of generally good quality and is suitable for use by the pumpers in the District, the stakeholders, and the public. Groundwater from localized areas with marginal to poor water quality can still be utilized but may require treatment prior to being used as a potable source.

SECTION 6 FUTURE ACTIVITIES

WRD will continue to update and augment its RGWMP to best serve the needs of the District, the pumpers, and the public. Some of the activities planned for the RGWMP in the current WY 2020-21 are listed below.

- WRD continues refining the regional understanding of groundwater occurrence, movement, and quality. Water levels will continue to be recorded using automatic dataloggers to monitor groundwater elevation differences throughout the year. Conductivity sensors are being utilized at selected nested monitoring wells to track water quality changes and supplement the automated water level data. Telemetry technology is being implemented to send real-time water level data to WRD from several locations with a goal of real-time display of water levels on the WRD website.
- WRD continually evaluates the need to fill data gaps in water level data, water quality data, and the hydrogeologic conceptual model with additional geologic data provided from drilling, construction, and monitoring of nested wells. Three such wells are planned for installation in WY 2020-21 including one within the spreading grounds in the City of Montebello, and two others downgradient of the spreading grounds in the Cities of Paramount and Cerritos. The additional wells will provide additional water quality data and will enhance tracking of replenishment water.
- WRD will continue to sample groundwater from nested monitoring wells and analyze
 the samples for general water quality constituents. In addition, the focus will continue
 on constituents of interest to WRD, the pumpers, and other stakeholders, such as TCE,
 PCE, manganese, arsenic, perchlorate, and hexavalent chromium. As regulators
 consider new water quality standards for chemicals of emerging concern (CECs) that
 have not been comprehensively monitored in the past, WRD's nested monitoring well
 network is in good position to screen for emerging CECs in groundwater which may
 include: pesticides, pharmaceuticals and personal care products, oil and gas field
 indicators, and other CECs. WRD will be working on refining the hydrogeologic

conceptual model of the CBWCB using data from the RGWMP along with an update to the groundwater model, developed and expected to be published by the USGS in 2021, to improve the framework for understanding the groundwater system and for use as a planning tool.

- Consistent with WRD's mission to provide, protect, and preserve high quality groundwater and as required by the State's Recycled Water Policy, a SNMP is in place and will continue to be implemented. Existing and planned implementation measures are and will continue to be protective of groundwater quality and its beneficial uses.
- Through the RGWMP, WRD will continue to collect CBWCB groundwater level data, track seasonal and long-term trends and provide the data to the CASGEM program.
- WRD will continue to monitor the quality of replenishment water sources to ensure the CBWCB are being recharged with high-quality water.
- WRD will continue to use the data generated by the RGWMP along with WRD's GIS capabilities to address current and potential water quality issues and groundwater replenishment in its service area.

SECTION 7

REFERENCES

Bookman-Edmonston Engineering, Inc., *Report on Program of Water Quality Monitoring*, January 1973.

California Department of Water Resources (DWR), Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A–Ground Water Geology, 1961.

California Department of Water Resources (DWR), Bulletin No. 104: Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix B–Safe Yield Determinations, 1962.

Hem, John D., *Study and Interpretation of the Chemical Characteristics of Natural Water, Third Edition*, U.S. Geological Survey Water-Supply Paper 2254, 1992.

Metropolitan Water District of Southern California (MWD), Annual Report to Member Agencies, 2006.

Montgomery Watson, *Report for West Coast Basin Desalinization Feasibility/Siting Study*, February 1997.

Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith J.; Johnson, Theodore A.; Paybins, Katherine S.; and Nishikawa, Tracey: *Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California*, United States Geological Survey Water Resources Investigations Report 03-4065; Sacramento, California, 2003.

State Water Resources Control Board (SWRCB), *Per-and Polyfluoroalkyl Substances* (*PFAS*), <u>https://www.waterboards.ca.gov/pfas/</u> - December 9, 2019 update

Trumpolt, Clayton, W.; Crain, Michael; Cullison, Geoffrey D.; Flanagan. Susan J. P.; Siegel, Lenny; Lathrop, Stephen: *Perchlorate: Sources, Uses, and Occurrence in the Environment*, Remediation, Wiley Periodicals., Inc., 2005.

Water Replenishment District of Southern California (WRD), *Engineering Survey and Report*, 2015.

Water Replenishment District of Southern California (WRD), *Alternative Analysis for the Central Basin – Los Angeles County, California*, December 16, 2016.

PAGE LEFT INTENTIONALLY BLANK

TABLES

Page 1 of 7

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Bell #1	1	102041	1750	1730	1750	Pico Formation ²
	2	102042	1215	1195	1215	Sunnyside
	3	102043	985	965	985	Sunnyside
	4	102044	635	615	635	Silverado
	5	102045	440	420	440	Jefferson
	6	102046	270	250	270	Gage
Bell Gardens #1	1	101954	1795	1775	1795	Sunnyside ²
	2	101955	1410	1390	1410	Sunnyside ²
	3	101956	1110	1090	1110	Sunnyside
	4	101957	875	855	875	Sunnyside
	5	101958	575	555	575	Silverado
	6	101959	390	370	390	Lynwood
Carson #1	1	100030	1010	990	1010	Silverado
Carson #1	2	100030	760	740	760	Silverado
	3	100031	480	460	480	Lynwood
	4	100032	270	250	270	Gage ²
Carson #2	1	101787	1250	1230	1250	Sunnyside ²
Carson #2	-					Sunnyside ²
	2	101788	870	850 600	870	
	3	101789	620		620	Silverado
	4 5	101790	470 250	450	470 250	Silverado
~ //2		101791		230		Lynwood
Carson #3	1	102075	1800	1600	1620	Pico Formation ²
	2	102076	1240	1220	1240	Sunnyside ² Silverado ²
	3	102077	1100	1080	1100	
	4	102078	890	870	890	Silverado
	5	102079	640	620	640	Silverado
	6	102080	380	360	380	Lynwood
Cerritos #1	1	100870	1215	1155	1175	Sunnyside ²
	2	100871	1020	1000	1020	Silverado ²
	3	100872	630	610	630	Lynwood
	4	100873	290	270	290	Gage
	5	100874	200	180	200	Artesia
	6	100875	135	125	135	Artesia
Cerritos #2	1	101781	1470	1350	1370	Sunnyside ²
	2	101782	935	915	935	Silverado
	3	101783	760	740	760	Lynwood ²
	4	101784	510	490	510	Hollydale
	5	101785	370	350	370	Gage
	6	101786	170	150	170	Artesia
Chandler #3B	1	100082	363	341	363	Silverado ²
Chandler #3A	2	100083	192	165	192	Lynwood ²
Commerce #1	1	100881	1390	1330	1390	Pico Formation ²
	2	100882	960	940	960	Sunnyside
	3	100883	780	760	780	Sunnyside ²
	4	100884	590	570	590	Silverado
	5	100885	345	325	345	Jefferson
	6	100886	225	205	225	Hollydale

Page 2 of 7

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation	Bottom of Perforation	Aquifer Designation ¹
		1.0000		(feet)	(feet)	
Compton #1	1	101809	1410	1370	1390	Sunnyside ²
	2	101810	1170	1150	1170	Sunnyside ²
	3	101811	820	800	820	Silverado
	4	101812	480	460	480	Hollydale
	5	101813	325	305	325	Gage
Compton #2	1	101948	1495	1475	1495	Pico Formation ²
	2	101949	850	830	850	Sunnyside ²
	3	101950	605	585	605	Silverado
	4	101951	400	380	400	Lynwood ²
	5	101952	315	295	315	Hollydale ²
	6	101953	170	150	170	Exposition
Downey #1	1	100010	1190	1170	1190	Sunnyside ²
	2	100011	960	940	960	Sunnyside ²
	3	100012	600	580	600	Silverado
	4	100013	390	370	390	Jefferson
	5	100014	270	250	270	Gage
	6	100015	110	90	110	Gaspur
Gardena #1	1	100020	990	970	990	Pico Formation ²
	2	100021	465	445	465	Silverado
	3	100022	365	345	365	Lynwood ²
	4	100023	140	120	140	Gage
Gardena #2	1	101804	1335	1275	1335	Pico Formation ²
	2	101805	790	770	790	Silverado
	3	101806	630	610	630	Silverado
	4	101807	360	340	360	Lynwood
	5	101808	255	235	255	Gardena
Hawthorne #1	1	100887	990	910	950	Pico Formation ²
	2	100888	730	710	730	Sunnyside ²
	3	100889	540	520	540	Sunnyside ²
	4	100889	420	400	420	Silverado
	5	100890	260	240	260	Lynwood
	6	100891	130	110	130	Gage
Hendington Deale #1						
Huntington Park #1	1	100005 100006	910	890 690	910 710	Silverado
	2		710			Lynwood
	3	100007	440	420	440	Hollydale
	4 5	100008 100009	295 134	275	295 134	Gage Gaspur
T 1 1//1						-
Inglewood #1	1	100091	1400	1380	1400	Pico Formation ² Pico Formation ²
	2	100092	885	865	885	
	3	100093	450	430	450	Silverado
	4	100094	300	280	300	Lynwood ²
	5	100095	170	150	170	Gage
Inglewood #2	1	100824	860	800	840	Pico Formation ²
	2	100825	470	450	470	Silverado ²
	3	100826	350	330	350	Lynwood ²
	4	100827	245	225	245	Gage ²

Page 3 of 7

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Inglewood #3	1	102138	1940	1900	1940	Pico Formation ²
-	2	102139	1460	1440	1460	Pico Formation ²
	3	102140	1275	1255	1275	Pico Formation ²
	4	102141	910	890	910	Pico Formation ²
	5	102142	560	540	560	Silverado
	6	102143	390	370	390	Lynwood
	7	102144	265	245	265	Gage
Lakewood #1	1	100024	1009	989	1009	Sunnyside
	2	100025	660	640	660	Lynwood
	3	100026	470	450	470	Hollydale
	4	100027	300	280	300	Gage
	5	100028	160	140	160	Artesia
	6	100029	90	70	90	Bellflower
Lakewood #2	1	102151	2000	1960	2000	Sunnyside ²
Earowood #2	2	102151	1760	1740	1760	Sunnyside ²
						Sunnyside ²
	3	102153	1320	1300	1320	
	4	102154	1015	995	1015	Silverado
	5	102155	710	690	710	Lynwood
	6	102156	575	555	575	Jefferson
	7	102157	275	255	275	Gage
	8	102158	120	110	120	Artesia
La Mirada #1	1	100876	1150	1130	1150	Sunnyside
	2	100877	985	965	985	Silverado ²
	3	100878	710	690	710	Lynwood ²
	4	100879	490	470	490	Jefferson ²
	5	100880	245	225	245	Gage
Lawndale #1	1	102171	1400	1360	1400	Pico Formation ²
	2	102172	905	885	905	Sunnyside ²
	3	102173	635	615	635	Silverado
	4	102174	415	395	415	Silverado
	5	102175	310	290	310	Lynwood
	6	102176	190	170	190	Gardena
Lomita #1	1	100818	1340	1240	1260	Pico Formation ²
	2	100819	720	700	720	Silverado
	3	100820	570	550	570	Silverado
	4	100821	420	400	420	Lynwood
	5	100822	240	220	240	Gage ²
	6	100823	120	100	120	Gage ²
Long Beach #1	1	100920	1470	1430	1450	Sunnyside ²
Long Deach #1	2					
		100921	1250	1230	1250	Sunnyside Silverado ²
	3	100922	990	970	990	
	4	100923	619	599	619	Lynwood ²
	5	100924	420	400	420	Jefferson ²
	6	100925	175	155	175	Artesia
Long Beach #2	1	101740	1090	970	990	Sunnyside
	2	101741	740	720	740	Silverado ²
	3	101742	470	450	470	Silverado
	4	101743	300	280	300	Lynwood
	5	101744	180	160	180	Gage
	6	101745	115	95	115	Gaspur

Page 4 of 7

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Long Beach #3	1	101751	1390	1350	1390	Pico Formation ²
	2	101752	1017	997	1017	Silverado
	3	101753	690	670	690	Silverado ²
	4	101754	550	530	550	Silverado ²
	5	101755	430	410	430	Lynwood
Long Beach #4	1	101759	1380	1200	1220	Pico Formation ²
	2	101760	820	800	820	Sunnyside ²
Long Beach #6	1	101792	1530	1490	1510	Pico Formation ²
	2	101793	950	930	950	Sunnyside
	3	101794	760	740	760	Sunnyside
	4	101795	500	480	500	Silverado
	5	101796	400	380	400	Lynwood
	6	101797	240	220	240	Gage
Long Beach #8	1	101819	1495	1435	1455	Pico Formation ²
0	2	101820	1040	1020	1040	Sunnyside ²
	3	101821	800	780	800	Silverado ²
	4	101822	655	635	655	Silverado ²
	5	101823	435	415	435	Silverado ²
	6	101824	185	165	185	Lynwood ²
Los Angeles #1	1	100926	1370	1350	1370	Sunnyside ²
2001 ingeles #1	2	100927	1100	1080	1100	Sunnyside
	3	100928	940	920	940	Sunnyside
	4	100929	660	640	660	Silverado
	5	100930	370	350	370	Lynwood ²
Los Angeles #2	1	102003	1370	1330	1370	Pico Formation ²
	2	102004	730	710	730	Sunnyside
	3	102005	525	505	525	Silverado
	4	102006	430	410	430	Lynwood
	5	102007	265	245	265	Hollydale ²
	6	102008	155	135	155	Gardena
Los Angeles #3	1	102069	1570	1210	1230	Pico Formation ²
Los ringeles #5	2	102070	895	875	895	Sunnyside ²
	3	102070	725	705	725	Sunnyside ²
	4	102072	570	550	570	Sunnyside
	5	102072	350	330	350	Silverado ²
	6	102075	210	190	210	Gage ²
Los Angeles #4	1	102131	1780	1740	1780	Pico Formation ²
203 mgeles #+	2	102131	1780	1190	1230	Sunnyside ²
	3	102132	740	720	740	Sunnyside
	4	102133	510	490	510	Silverado
	5	102134	310	355	375	Lynwood
	6	102135	255	235	255	Gage
Los Angeles #5	1	102130	2000	1960	2000	Pico Formation ²
Los Aligeres #3	2	103029	1255	1235	1255	Sunnyside ²
	3		770	750	770	Sunnyside
		103031				
	4	103032	575	555	575	Sunnyside
	5	103033	450	430	450	Silverado Lynwood ²
	6	103034	235	215 95	235	Lynwood

Page 5 of 7

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
Los Angeles #6	1	103047	600	580	600	Pico Formation ²
	2	103048	440	420	440	Sunnyside
	3	103049	365	345	365	Silverado
	4	103050	275	255	275	Lynwood
Lynwood #1	1	102211	2900	2880	2900	Pico Formation ²
	2	102212	2450	2430	2450	Pico Formation ²
	3	102213	1670	1650	1670	Sunnyside ²
	4	102214	1465	1445	1465	Sunnyside ²
	5	102215	1220	1200	1220	Silverado ²
	6	102216	900	880	900	Silverado ²
	7	102217	660	640	660	Lynwood
	8	102218	335	315	335	Gardena
	9	102219	180	160	180	Gaspur
Manhattan Beach #1	1	102081	1990	1950	1990	Pico Formation ²
	2	102082	1590	1570	1590	Pico Formation ²
	3	102083	1270	1250	1270	Pico Formation ²
	4	102084	885	865	885	Sunnyside ²
	5	102085	660	640	660	Sunnyside ²
	6	102086	340	320	340	Silverado
	7	102087	200	180	200	Gage
Montebello #1	1	101770	980	900	960	Pico Formation ²
	2	101771	710	690	710	Sunnyside
	3	101772	520	500	520	Sunnyside
	4	101773	390	370	390	Silverado
	5	101774	230	210	230	Lynwood
	6	101775	110	90	110	Gage
Norwalk #1	1	101814	1420	1400	1420	Sunnyside
	2	101815	1010	990	1010	Silverado
	3	101816	740	720	740	Lynwood
	4	101817	450	430	450	Hollydale
	5	101818	240	220	240	Gage
Norwalk #2	1	101942	1480	1460	1480	Pico Formation ²
	2	101943	1280	1260	1280	Pico Formation ²
	3	101944	980	960	980	Sunnyside ²
	4	101945	820	800	820	Sunnyside ²
	5	101946	500	480	500	Silverado
	6	101947	256	236	256	Gardena
Pico #1	1	100001	900	860	900	Pico Formation ²
	2	100002	480	460	480	Silverado
	3	100003	400	380	400	Silverado
	4	100004	190	170	190	Gardena ²
Pico #2	1	100085	1200	1180	1200	Sunnyside ²
	2	100086	850	830	850	Sunnyside ²
	3	100087	580	560	580	Sunnyside
	4	100088	340	320	340	Silverado
	5	100089	255	235	255	Lynwood
	6	100089	120	100	120	Gaspur/Gage ²

Page 6 of 7

Well Name	Zone	WRD ID Number	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Aquifer Designation ¹
PM-2 Police Station	1	102237	665	645	665	Sunnyside ²
	2	102238	540	520	540	Silverado
	3	102239	390	370	390	Lynwood/Silverado ²
	4	102240	260	240	260	Lynwood
PM-3 Madrid	1	100034	685	640	680	Sunnyside ²
	2	100035	525	480	520	Silverado
	3	100036	285	240	280	Lynwood
	4	100037	190	145	185	Gardena
PM-4 Mariner	1	100038	720	670	710	Sunnyside ²
	2	100039	550	500	540	Silverado
	3	100040	390	340	380	Lynwood
	4	100041	250	200	240	Gardena
PM-5 Columbia Park	1	102047	1480	1360	1380	Pico Formation ²
	2	102048	960	940	960	Pico Formation ²
	3	102049	790	770	790	Sunnyside ²
	4	102050	600	580	600	Silverado
	5	102051	340	320	340	Lynwood ²
	6	102052	160	140	160	Gardena
PM-6 Madrona Marsh	1	102053	1235	1195	1235	Pico Formation ²
	2	102054	925	905	925	Sunnyside ²
	3	102055	790	770	790	Sunnyside ²
	4	102056	550	530	550	Silverado
	5	102057	410	390	410	Lynwood
	6	102058	260	240	260	Lynwood
Rio Hondo #1	1	100064	1150	1110	1130	Pico Formation ²
	2	100065	930	910	930	Sunnyside ²
	3	100066	730	710	730	Sunnyside
	4	100067	450	430	450	Silverado
	5	100068	300	280	300	Hollydale
	6	100069	160	140	160	Gardena
Seal Beach #1	1	102062	1485	1345	1365	Sunnyside ²
	2	102063	1180	1160	1180	Sunnyside ²
	3	102064	1040	1020	1040	Sunnyside ²
	4	102065	795	775	795	Silverado
	5	102066	625	605	625	Lynwood ²
	6	102067	235	215	235	Gage
	7	102068	70	60	70	Artesia
South Gate #1	1	100893	1460	1440	1460	Sunnyside ²
	2	100894	1340	1320	1340	Sunnyside ²
	3	100895	930	910	930	Silverado ²
	4	100896	585	565	585	Lynwood
	5	100897	250	220	240	Exposition ²
South Gate #2	1	102180	1760	1740	1760	Sunnyside ²
South Gate #2	2		1430	1410	1430	Sunnyside ²
	1	102181				
	3	102182	1082	1062	1082	Sunnyside Silverado ²
	4 5	102183 102184	690 430	670 410	690 430	Hollydale
		10/2104	4 10	410		попудаје

Page 7 of 7

		WRD ID	Depth of	Top of	Bottom of	Aquifer
Well Name	Zone	Number	Well (feet)	Perforation (feet)	Perforation (feet)	Designation ¹
Westchester #1	1	101776	860	740	760	Pico Formation ²
	2	101777	580	560	580	Sunnyside ²
	3	101778	475	455	475	Sunnyside ²
	4	101779	330	310	330	Silverado
	5	101780	235	215	235	Silverado
Whittier #1	1	101735	1298	1180	1200	Pico Formation ²
	2	101736	940	920	940	Pico Formation ²
	3	101737	620	600	620	Sunnyside
	4	101738	470	450	470	Silverado
	5	101739	220	200	220	Jefferson
Whittier #2	1	101936	1390	1370	1390	Pico Formation ²
	2	101937	1110	1090	1110	Pico Formation ²
	3	101938	675	655	675	Sunnyside
	4	101939	445	425	445	Silverado
	5	101940	335	315	335	Silverado
	6	101941	170	150	170	Gage ²
Whittier Narrows #1	1	100046	810	749	769	Sunnyside
	2	100047	810	610	629	Sunnyside
	3	100048	810	463	482.5	Sunnyside
	4	100049	810	393	402	Silverado
	5	100050	810	334	343.5	Silverado
	6	100051	810	273	282.5	Lynwood
	7	100052	810	234	243	Lynwood
	8	100053	810	163	173	Gardena
	9	100054	810	95	104.5	Gaspur
Whittier Narrows #2	1	100055	720	659	678.4	Pico Formation ²
	2	100056	720	579	598.2	Pico Formation ²
	3	100057	720	469	488.2	Pico Formation ²
	4	100058	720	419	428.2	Pico Formation ²
	5	100059	720	329	338.3	Pico Formation ²
	6	100060	720	263	273.3	Lynwood
	7	100061	720	203	223.3	Lynwood
	8	100062	720	136	145.3	Gardena ²
	9	100063	720	91	100.3	Gardena
Willowbrook #1	1	100016	905	885	905	Sunnyside ²
WIIIOWDFOOK #1	2	100018	520	500	520	Silverado
	3	100017	320	360	320	Lynwood
	4	100018	220	200	220	Gage
Wilmington #1	1	100070	1040	915	935	Sunnyside ²
winnington #1	2	100070	800	780	800	Silverado
	3	100071	570	550	570	Silverado
	4	100072	245	225	245	Lynwood
	5	100073	140	120	140	Gage
Wilminster #2						Sunnyside ²
Wilmington #2	1	100075	1030	950	970	-
	2	100076	775	755	775	Silverado
	3	100077	560	540	560	Silverado
	4 5	100078 100079	410 140	390 120	410 140	Lynwood Gage

TABLE 1.2 CONSTRUCTION INFORMATION FOR WELLS USED TO PREPARE FIGURES 2.1 AND 2.2

Well Name	Zone	WRD ID Number	Reference Point Elevation (feet msl)	Depth of Well (feet)	Top of Perforation (feet)	Bottom of Perforation (feet)	Date of Measurement	Groundwater Elevation (feet msl)	Aquifer Designation ¹
Hawkins #1	3	102233	147.75	296	286	296	9/15/2020	41.21	Lynwood
Koontz #1	1	102226	135.17	491	481	491	9/15/2020	29.97	Lynwood
LADWP-MH-MW1A	2	102251	133.91	580	510	560	10/22/2020	-9.47	Silverado
LHCWD-MW1	1	102164	151.00	570	540	560	9/14/2020	78.45	Sunnyside
LongBeach #7	2	101899	16.35	670	650	670	9/22/2020	-37.67	Silverado
Sepulveda #1	1	201058	90.00	550	370	530	9/23/2020	3.19	Silverado
Vernon #1	1	102241	210.45	530	520	530	10/5/2020	-26.96	Silverado

1 - Aquifer designations are based on DWR's Bulletin 104.

TABLE 2.1GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020Device 1 of 10

Page 1 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Bell #1								rence Point Ele	
Depth of Screen Interval	1730-1750	1195-1215	965-985	615-635	420-440	250-270			
Aquifer Name ¹	Pico Form. ²	Sunnyside	Sunnyside	Silverado	Jefferson	Gage			
12/12/2019	-31.20	-33.83	-17.70	-17.75	-12.14	9.63			
3/9/2020	-30.72	-33.11	-16.66	-18.27	-12.68	8.88			
4/21/2020	-26.77	-26.47	-12.18	-14.54	-9.86	10.24			
9/23/2020	-32.38	-32.03	-18.70	-22.97	-15.83	7.03			
Bell Gardens #1	-52.50	-52.05	-10.70	-22.91	-15.65	7.05	Refe	rence Point Ele	vation: 121 (
Depth of Screen Interval	1775-1795	1390-1410	1090-1110	855-875	555-575	370-390	Itere		vation: 121.
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside	Sunnyside	Silverado	Lynwood			
12/16/2019	-2.63	-1.12	1.64	5.31	9.15	7.18			
1/16/2020	-2.03	0.62	3.61	7.11	10.34	7.88			
3/11/2020	-0.41	0.35	2.92	5.98	8.74	5.95			
4/22/2020	6.24			9.88	12.52				
	1	7.26	9.36			9.19			
9/23/2020	0.86	-1.49	-0.47	2.69	6.20	3.73	P		
Carson #1	000 4040		4 6 9 4 9 9				Re	ference Point E	levation: 26.
Depth of Screen Interval	990-1010	740-760	460-480	250-270					
Aquifer Name ¹	Silverado	Silverado	Lynwood	Gage ²					
10/4/2019	-36.60	-35.26	-9.29	-8.13					
11/21/2019	-37.44	-36.08	-9.31	-8.21					
12/9/2019	-36.15	-34.82	-9.29	-8.13					
1/7/2020	-31.83	-30.87	-8.54	-7.58					
2/5/2020	-31.39	-30.56	-8.33	-7.36					
3/4/2020	-37.08	-35.85	-8.57	-7.52					
3/19/2020	-37.21	-35.84	-8.74	-7.59					
5/7/2020	-32.56	-32.03	-8.29	-7.29					
6/30/2020	-36.44	-35.54	-8.49	-7.36					
8/13/2020	-38.08	-37.36	-8.84	-7.60					
9/10/2020	-37.86	-37.12	-8.57	-7.40					
9/21/2020	-38.83	-38.06	-8.84	-7.62					
Carson #2				-			Ret	ference Point E	levation: 43.
Depth of Screen Interval	1230-1250	850-870	600-620	450-470	230-250				
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Silverado	Silverado	Lynwood				
12/10/2019	-25.22	-20.18	-19.94	-17.70	-16.15				
3/19/2020	-24.93	-21.29	-21.06	-18.20	-16.26				
9/21/2020	-26.16	-23.48	-23.06	-19.14	-16.79				
Carson #3	•	•		•			Ret	ference Point E	levation: 20.
Depth of Screen Interval	1600-1620	1220-1240	1080-1100	870-890	620-640	360-380			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado ²	Silverado	Silverado	Lynwood			
12/10/2019	-26.00	-30.60	-28.71	-27.90	-27.00	-11.29			
3/3/2020	-27.00	-31.25	-30.98	-31.03	-30.76	-12.29			
3/18/2020	-24.99	-29.32	-29.36	-31.34	-31.33	-10.97			
8/12/2020	-24.95	-30.57	-30.04	-31.89	-31.65	-10.77			
9/21/2020	-25.06	-30.82	-30.33	-32.52	-32.40	-10.99			
Cerritos #1	20.00	23.02	23.25	02.02	22.10	10.77	Re	ference Point E	levation: 43
Depth of Screen Interval	1155-1175	1000-1020	610-630	270-290	180-200	125-135	Ke	erence i onit E	
Aquifer Name ¹	Sunnyside ²	Silverado ²	Lynwood	Gage	Artesia	Artesia			L
12/16/2019	-30.86	-37.75	-20.43	19.13	20.94	21.02			
3/11/2020	-30.86	-37.75	-20.43	20.76					
					22.17	22.26			
6/29/2020	-38.42	-45.75	-24.38	20.56	22.24	22.37			
9/16/2020	-44.19	-50.50	-29.68	19.22	21.17	21.30			

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020

Page 2 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7 ZON	E 8 ZC	DNE 9
Cerritos #2	•						Reference P	oint Elevatio	on: 76.47
Depth of Screen Interval	1350-1370	915-935	740-760	490-510	350-370	150-170			
Aquifer Name ¹	Sunnyside ²	Silverado	Lynwood ²	Hollydale	Gage	Artesia			
12/19/2019	-23.13	-29.94	-27.08	-5.70	15.27	22.49			
3/9/2020	-17.03	-26.38	-24.48	-3.95	16.04	23.05			
4/16/2020	-12.77	-17.04	-18.11	0.03	17.16	23.58			
6/29/2020	-20.06	-32.43	-28.76	-6.56	15.86	23.28			
9/17/2020	-26.63	-34.63	-30.41	-8.16	15.07	22.68			
Chandler #3							Reference Po	int Elevatior	n: 156.01
Depth of Screen Interval	341-363	165-192							
Aquifer Name ¹	Silverado ²	Lynwood ²							
12/13/2019	-9.87	-9.80							
3/16/2020	-9.11	-9.00							
7/9/2020	-9.70	-9.38							
8/27/2020	-9.53	-9.41							
9/23/2020	-9.39	-9.31							
Commerce #1	,,		<u>I</u>	<u>I</u>			Reference Po	int Elevation	· 159.31
Depth of Screen Interval	1330-1390	940-960	760-780	570-590	325-345	205-225			. 157.51
Aquifer Name ¹	Pico Form. ²	Sunnyside	Sunnyside ²	Silverado	Jefferson	Hollydale			
12/9/2019	24.49	21.45	18.10	-11.12	-9.57	26.09			
3/9/2020	24.79	22.48	19.11	-13.58	-10.49	25.57			
4/29/2020	25.20	25.22	22.15	-13.38	-12.92	25.54			
7/1/2020	25.33	23.22	22.13	-13.06	-12.92	25.23			
	1								
9/16/2020	24.86	24.75	21.26	-14.68	-15.19	24.58	Reference P	aint Elavatia	
Compton #1	1370-1390	1150 1170	800-820	460-480	305-325		Kelefelice F		11. 00.04
Depth of Screen Interval Aquifer Name ¹	Sunnyside ²	1150-1170 Sunnyside ²	Silverado						
*				Hollydale	Gage				
10/17/2019	-60.92	-60.66	-29.48	-32.17	-18.64				
12/16/2019	-55.79	-55.58	-26.90	-27.89	-13.55				
3/19/2020	-37.60	-37.50	-23.73	-27.06	-13.40				
4/20/2020	-28.74	-28.68	-21.37	-24.85	not measured				
8/24/2020	-58.59	-58.39	-28.90	-26.69	not measured				
9/18/2020	-59.78	-59.56	-28.84	-31.42	-17.37				
Compton #2							Reference P	oint Elevatio	n: 76.97
Depth of Screen Interval	1479-1495	830-850	585-605	380-400	295-315	150-170			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado	Lynwood ²	Hollydale ²	Exposition			
12/17/2019	-29.43	-49.24	-45.45	-45.91	-38.91	-33.33			
3/19/2020	-27.53	-43.18	-43.75	-44.09	-37.79	-32.67			
4/24/2020	-23.41	-39.75	-42.81	-43.22	-37.29	-32.09			
9/18/2020	-23.31	-50.99	-49.29	-48.26	-40.41	-33.98			
Downey #1							Reference P	oint Elevatio	on: 99.39
Depth of Screen Interval	1170-1190	940-960	580-600	370-390	250-270	90-110			
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Silverado	Jefferson	Gage	Gaspur			
12/11/2019	-6.85	-5.59	-1.46	0.61	23.03	26.54			
3/13/2020	-3.84	-3.01	-0.92	1.27	23.11	26.64	ļ		
5/11/2020	2.63	1.28	2.62	0.43	23.35	26.80	ļ		
9/22/2020	-8.92	-8.39	-4.15	-3.34	22.20	26.47			
9/24/2020	-8.91	-8.42	-4.30	-3.38	22.24	26.49			

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020

Page 3 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZON	E 9
Gardena #1	•						Re	ference Point E	levation:	84.23
Depth of Screen Interval	970-990	445-465	345-365	120-140						
Aquifer Name ¹	Pico Form. ²	Silverado	Lynwood ²	Gage						
12/15/2019	-33.49	-35.87	-32.57	-4.47						
3/15/2020	-29.67	-64.40	-39.00	-3.98						
4/2/2020	-29.96	-66.73	-41.49	-3.64						
9/9/2020	-30.16	-33.88	-29.93	-3.30						
9/15/2020	-30.17	-33.90	-29.82	-3.37						
Gardena #2							Re	ference Point E	levation:	29.45
Depth of Screen Interval	1275-1335	770-790	610-630	340-360	235-255					
Aquifer Name ¹	Pico Form. ²	Silverado	Silverado	Lynwood	Gardena					
12/16/2019	-27.47	-24.34	-24.21	-9.53	-3.05					
3/18/2020	-25.28	-38.41	-39.91	-10.35	-1.65					
3/25/2020	-25.46	-39.16	-40.58	-10.54	-1.66					
8/26/2020	-26.55	-37.75	-38.99	-11.10	-2.25					
Hawthorne #1							Re	ference Point E	levation:	88.98
Depth of Screen Interval	910-950	710-730	520-540	400-420	240-260	110-130	10			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood	Gage				
12/18/2019	-35.65	-1.61	-1.30	-1.26	1.45	7.28				
3/11/2020	-30.98	-0.64	-0.32	-0.24	2.13	7.60				
3/19/2020	-30.89	-0.23	0.07	0.14	2.41	7.46				
8/11/2020	-31.74	0.71	1.09	1.19	3.20	8.07				
9/22/2020	-30.37	0.78	1.13	1.27	3.22	8.03				
Huntington Park #1	-50.57	0.76	1.15	1.27	5.22	0.05	Refe	erence Point Ele	vation.	179 44
Depth of Screen Interval	890-910	690-710	420-440	275-295	114-134		iter		varion.	179.11
Aquifer Name ¹	Silverado	Lynwood	Hollydale	Gage	Gaspur					
12/13/2019	-25.86	-28.21	-19.18	9.49	Dry					
3/13/2020	-25.51	-27.98	-17.09	9.04	Dry					
3/30/2020	-24.22	-26.82	-18.22	9.63	Dry					
4/22/2020	-23.59	-26.58	-17.76	9.65	Dry					
7/1/2020	-24.64	-26.75	-19.48	8.71	Dry					
8/31/2020	-24.04	-20.75	-20.15	8.22	Dry					
9/29/2020	-25.57	-29.40	-19.82	8.32	Dry					
Inglewood #1	-23.37	-29.40	-19.62	0.32	DIy		Def	erence Point Ele	votion	112 82
Depth of Screen Interval	1380-1400	865-885	430-450	280-300	150-170		Ken		vanon.	112.02
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Silverado	Lynwood ²	Gage					
10/17/2019	-28.50	-27.71	-20.07	-1.07	5.87					
12/10/2019	-28.28	-27.97	-20.81	-1.48	5.44					
1/7/2020	-28.15	-28.07	-20.52	-1.52	5.54					
3/11/2020	-27.97	-28.48	-16.58	1.27	4.57					
3/24/2020	-27.79	-28.35	-16.75	-0.11	5.52					
8/19/2020	-27.31	-27.48	-18.51	-0.69	5.59					
9/22/2020	-27.59	-27.48	-18.31	-0.69	5.39					
Inglewood #2	-21.39	-27.49	-10.72	-1.17	5.57		Dof	erence Point Ele	vation	210.82
-	800-840	450-470	330 250	225 245			Kel	erence Point Ele	vation:	219.82
Depth of Screen Interval Aquifer Name ¹	Pico Form. ²	450-470 Silverado ²	330-350 Lynwood ²	225-245 Gage ²						
12/10/2019	-21.40	-15.78	-2.03	1.72						
3/11/2020	-21.40	-15.78	-2.03	2.07						
9/22/2020	-21.10	-14.73	-1.88	1.97						

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020 n

Page	4	of	10
------	---	----	----

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Inglewood #3							Re	eference Point E	levation: 72.2
Depth of Screen Interval	1900-1940	1440-1460	1255-1275	890-910	540-560	370-390	245-265		
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Pico Form. ²	Pico Form. ²	Silverado	Lynwood	Gage		
12/18/2019	-34.06	-28.01	-32.18	-37.48	-37.76	-6.02	5.28		
3/9/2020	-34.46	-27.79	-31.50	-32.60	-33.36	-3.48	5.77		
4/23/2020	-34.57	-27.50	-31.08	-30.28	-30.49	-1.57	6.18		
8/20/2020	-34.61	-27.38	-30.49	-32.86	-32.54	-3.13	6.22		
9/24/2020	-34.78	-26.91	-30.38	-32.23	-32.03	-3.28	6.12		
Lakewood #1			<u>.</u>	Ret	erence Point El	evation: 53.87 (Zones 5 and 6)	and 53.14 (Zon	es 1, 2, 3 and 4
Depth of Screen Interval	989-1009	640-660	450-470	280-300	140-160	70-90			
Aquifer Name ¹	Sunnyside	Lynwood	Hollydale	Gage	Artesia	Bellflower			
12/15/2019	-53.33	-35.60	-32.02	-16.88	-1.79	20.80			
3/17/2020	-30.53	-26.68	-25.34	-12.91	1.16	21.60			
4/22/2020	-21.96	-24.19	-22.14	-9.49	3.86	22.25			
6/30/2020	-40.01	-31.74	-28.42	-14.88	0.27	22.21			
9/22/2020	-56.38	-36.10	-33.53	-15.54	-1.69	21.76			
Lakewood #2							Re	eference Point E	levation: 40.5
Depth of Screen Interval	1960-2000	1740-1760	1300-1320	995-1015	690-710	555-575	255-275	110-120	
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood	Jefferson	Gage	Artesia	
12/16/2019	-25.51	-38.95	-37.48	-45.72	-24.91	-11.41	17.08	19.43	
3/19/2020	-14.87	-21.84	-23.71	-31.66	-14.05	-3.82	18.54	20.76	
4/29/2020	-5.55	-19.85	-20.10	-30.64	-12.73	-2.60	19.25	21.44	
6/30/2020	-13.42	-34.82	-40.15	-58.11	-29.23	-13.02	18.32	20.70	
9/15/2020	-22.82	-42.40	-46.14	-60.78	-33.33	-17.25	17.55	20.00	
9/22/2020	-23.55	-42.54	-46.10	-60.31	-34.03	-17.37	17.36	19.88	
La Mirada #1						- ,,		eference Point E	levation: 78.3
Depth of Screen Interval	1130-1150	965-985	690-710	470-490	225-245				
Aquifer Name ¹	Sunnyside	Silverado ²	Lynwood ²	Jefferson ²	Gage				
12/17/2019	-13.95	-8.69	-13.20	-29.61	-4.43				
3/13/2020	-8.31	-3.51	-11.89	-30.35	-1.13				
3/24/2020	-5.45	-0.95	-8.25	-24.83	1.33				
6/30/2020	-4.23	0.83	-14.03	-39.66	-6.19				
9/15/2020	-7.66	-5.91	-26.56	-46.55	-11.15				
9/28/2020	-9.01	-7.20	-27.41	-45.00	-10.75				
Lawndale #1		,					Re	eference Point E	levation: 48.9
Depth of Screen Interval	1360-1400	895-905	615-635	395-415	290-310	170-190			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado	Silverado	Lynwood	Gardena			
10/4/2019	-25.77	-31.60	-6.06	-5.67	-4.05	0.41			
11/21/2019	-25.60	-32.20	-3.72	-3.19	-1.75	0.18			
12/18/2019	-25.68	-25.92	-2.55	-2.08	-0.71	1.16			
1/7/2020	-25.51	-24.21	-2.16	-1.73	-0.35	1.62			
2/5/2020	-25.35	-27.08	-2.96	-2.46	-0.93	1.02			
3/18/2020	-23.35	-35.85	-0.07	0.53	1.58	3.02			
5/10/2020	1	-38.04	-0.88	-0.39	0.96	2.65			
4/7/2020	_224 //6			-11.17	0.20	2.05		1	1
4/7/2020 5/14/2020	-24.76				-0.35	2.08			
4/7/2020 5/14/2020 8/13/2020	-24.76 -24.72 -24.66	-39.15 -36.20	-2.52	-1.94	-0.35 -0.29	2.08 -1.59			

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020Page 5 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Lomita #1	LOILEI		LOILE	LOILE	LOILLU	LOILU		ference Point E	
Depth of Screen Interval	1240-1260	700-720	550-570	400-420	220-240	100-120	Re		
Aquifer Name ¹	Pico Form. ²	Silverado	Silverado	Lynwood	Gage ²	Gage ²			
12/13/2019	-19.85	-12.92	-9.46	-11.47	-9.16	-9.06			
3/18/2020	-18.21	-12.28	-8.54	-10.92	-8.35	-8.32			
4/15/2020	-19.09	-14.06	-8.76	-10.95	-8.70	not measured			
4/22/2020	-18.91	-12.59	-9.67	-10.93	-8.63	-9.01			
8/25/2020	-16.90	-13.92	-8.87	-10.97	-8.77	not measured			
9/24/2020	-17.80	-12.75	-9.23	-11.14	-8.44	-8.39			
Long Beach #1	17.00	12.75	,.25	11.11	0.11	0.07	Re	ference Point E	levation: 30.8
Depth of Screen Interval	1430-1450	1230-1250	970-990	599-619	400-420	155-175			
Aquifer Name ¹	Sunnyside ²	Sunnyside	Silverado ²	Lynwood ²	Jefferson ²	Artesia			
12/17/2019	-35.97	-38.94	-52.80	-27.00	-22.90	-2.93			
3/19/2020	-21.57	-23.20	-29.69	-18.68	-14.78	0.68			
5/7/2020	-8.51	-9.85	-20.56	-14.90	-12.49	0.22			
6/29/2020	-22.79	-25.98	-53.78	-28.97	-26.70	-5.30			
8/27/2020	-22.79	-23.98	-62.75	-28.97	-20.70	-3.30			
9/22/2020	-31.10	-34.32	-62.75	-34.83	-32.31	-8.55			
Long Beach #2	-55.14	-30.40	-04.15	-34.65	-32.23	-0.94	De	ference Point E	levation: 11.7
Depth of Screen Interval	970-990	720-740	450-470	280-300	160-180	95-115	Ke		levation. 44.2
Aquifer Name ¹	Sunnyside	Silverado ²	Silverado	Lynwood	Gage	Gaspur			
12/9/2019	-74.11	-47.68	-40.41	-15.22	-3.78	-1.58			
3/17/2020	-44.35	-39.80	-36.78	-13.55	-2.90	-0.92			
3/24/2020	-39.72	-38.78	-36.55	-13.22	-2.74	-0.81			
4/16/2020	-31.32	-35.36	-37.30	-12.72	-2.42	-0.52			
8/18/2020	-78.63	-49.93	-45.96	-14.71	-2.76	-0.43			
9/21/2020	-80.56	-50.85	-43.85	-14.81	-2.78	-0.60	D	C D'(E	
Long Beach #3	1250 1200	007 1017	670-690	520.550	410 420	1	Ke	ference Point E	levation: 20.0
Depth of Screen Interval Aquifer Name ¹	1350-1390 Pico Form. ²	997-1017	Silverado ²	530-550 Silverado ²	410-430				
*		Silverado			Lynwood				
11/7/2019	-29.17	-38.77	-38.75	-39.42	-1.65				
12/9/2019	-28.97	-37.99	-38.02	-38.62	-1.48				
3/17/2020	-27.65	-38.58	-38.53	-39.12	-0.13				
4/17/2020	-27.64	-36.74	-36.71	-37.27	0.26				
8/4/2020	-28.51	-40.60	-40.59	-40.94	-2.65				
9/21/2020	-28.98	-41.43	-41.43	-41.88	0.39				
Long Beach #4	1000 1000						Re	ference Point E	levation: 12.3
Depth of Screen Interval	1200-1220	800-820							
Aquifer Name ¹	Pico Form. ²	Sunnyside ²							
12/18/2019	-24.55	-8.35							
03/19/2020	-22.91	-6.76							
9/23/2020	-25.01	-7.83							
Long Beach #6	1						Re	ference Point E	levation: 34.4
Depth of Screen Interval	1490-1510	930-950	740-760	480-500	380-400	220-240			
Aquifer Name ¹	Pico Form. ²	Sunnyside	Sunnyside	Silverado	Lynwood	Gage			
12/16/2019	-50.34	-73.41	-76.43	-87.15	-87.11	-34.42			
12/27/2019	-49.86	-75.35	-79.35	-93.54	-94.21	-33.94			
3/17/2020	-37.44	-38.18	-38.17	-40.75	-40.75	-28.40			
3/17/2020	-37.06	-37.81	-37.94	-40.66	-40.65	-28.45			
6/29/2020	-34.24	-65.98	-70.93	-92.25	-93.09	-31.90			
8/24/2020	-46.25	-76.30	-81.07	-101.71	-102.56	-34.18			
9/24/2020	-49.66	-77.40	-82.29	-102.05	-102.98	-34.76			

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Long Beach #8	•						Re	eference Point E	levation: 21.20
Depth of Screen Interval	1435-1455	1020-1040	780-800	635-655	415-435	165-185			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Silverado ²	Silverado ²	Silverado ²	Lynwood ²			
12/16/2019	-10.90	-23.68	-31.92	-29.91	-29.12	4.73			
3/19/2020	-10.24	-22.63	-32.13	-30.53	-30.04	5.00			
6/23/2020	-10.28	-22.87	-32.84	-30.94	-30.59	5.28			
9/22/2020	-10.11	-23.67	-34.73	-32.75	-32.30	5.16			
Los Angeles #1	10.11	25.07	51.75	52.15	52.50	5.10	Re	eference Point E	levation 176 21
Depth of Screen Interval	1350-1370	1080-1100	920-940	640-660	350-370				
Aquifer Name ¹	Sunnyside ²	Sunnyside	Sunnyside	Silverado	Lynwood ²				
12/18/2019	-28.89	-20.34	-20.49	-19.71	-12.43				
3/18/2020	-28.85	-19.90	-20.01	-19.05	-11.46				
9/17/2020	-27.80	-20.23	-20.44	-19.80	-12.26				
Los Angeles #2	-27.80	-20.23	-20.44	-19.80	-12.20		Def	erence Point Ele	vation: 220.33
Depth of Screen Interval	1330-1370	710-730	505-525	410-430	245-265	135-155	Ker	erence i onit ER	evation. 220.5.
Aquifer Name ¹	Pico Form. ²	Sunnyside	Silverado	Lynwood	Hollydale ²	Gardena			
12/16/2019				-	-24.69				
3/9/2020	44.50	-8.61	-9.07	-19.62		Dry			
	45.03	-8.33	-8.77	-19.45	-24.50	Dry			
3/25/2020	not measured	-8.56	-8.99	-19.57	-24.76	Dry			
9/28/2020	44.06	-8.47	-8.91	-19.35	-24.65	Dry			. 145.24
Los Angeles #3						400.040	Ref	erence Point Ele	evation: 145.3
Depth of Screen Interval	1210-1230	875-895	705-725	550-570	330-350	190-210			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside ²	Sunnyside	Silverado ²	Gage ²			
12/17/2019	-18.78	-4.76	-8.65	-10.47	-7.99	5.16			
3/11/2020	-19.24	-4.47	-8.27	-9.49	-7.10	5.44			
4/15/2020	-18.46	-4.16	-7.86	-9.87	-7.23	5.61			
8/26/2020	-16.63	-4.24	-8.12	-9.80	-7.17	5.86			
9/16/2020	-18.11	-4.50	-8.42	-10.27	-7.63	5.63			
Los Angeles #4	1	1	1	1			Ref	erence Point Ele	evation: 136.04
Depth of Screen Interval	1740-1780	1190-1230	720-740	490-510	355-375	235-255			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside	Silverado	Lynwood	Gage			
12/10/2019	-26.95	-33.37	-30.31	-25.14	-25.55	-16.26			
3/9/2020	-27.74	-31.27	-28.67	-24.45	-24.79	-15.60			
3/26/2020	-27.39	-30.60	-27.92	-24.27	-25.81	-15.65			
9/1/2020	-25.27	-32.20	-30.70	-25.14	-25.62	-15.88			
9/25/2020	-25.92	-33.03	-30.69	-25.44	-25.77	-15.99			
Los Angeles #5	1	1	1	1		-	Ref	erence Point Ele	evation: 104.11
Depth of Screen Interval	1960-2000	1235-1255	750-770	555-575	430-450	215-235	95-105		
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside	Sunnyside	Silverado	Lynwood ²	Exposition		
12/17/2019	7.12	9.09	12.68	9.11	6.7	33.52	63.52		
3/9/2020	6.95	9.45	13.61	9.52	7.2	33.71	63.56		
4/14/2020	6.99	9.64	14.12	9.64	7.25	33.81	not measured		
4/15/2020	7.22	not measured	not measured	not measured	not measured	not measured	not measured		
8/25/2020	7.00	9.60	11.67	10.05	7.53	34.07	not measured		
8/26/2020	7.01	not measured	not measured	not measured	not measured	not measured	not measured		
10/1/2020	6.88	9.44	11.33	9.81	6.90	33.97	63.56		

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020Date 7 of 10

Page 7 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Los Angeles #6						•	Refe	rence Point Ele	evation: 213.59
Depth of Screen Interval	580-600	420-440	345-365	255-275					
Aquifer Name ¹	Pico Form. ²	Sunnyside	Silverado	Lynwood					
12/16/2019	3.19	-2.75	-3.07	-3.63					
3/9/2020	3.23	-2.60	-2.88	-3.40					
4/16/2020	not measured	3.18	-2.52	-2.79					
9/16/2020	3.05	-2.68	-2.89	-3.50					
Lynwood #1					oint Elevation:	88.86 (Zones)	3, 4, 5, 6, 7 and	9) and 89.29 (7	ones 1, 2 and 8)
Depth of Screen Interval	2880-2900	2430-2450	1650-1670	1445-1465	1200-1220	880-900	640-660	315-335	160-180
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado ²	Silverado ²	Lynwood	Gardena	Gaspur
12/17/2019	-23.92	-41.46	-47.85	-42.29	-30.32	-27.87	-28.96	-21.62	34.33
3/12/2020	-23.47	-37.06	-39.49	-35.34	-27.87	-27.23	-28.84	-23.61	34.36
5/12/2020	-19.94	-25.63	-30.85	-27.32	-23.59	-25.33	-27.29	-23.52	34.17
9/21/2020	-20.24	-39.24	-50.49	-44.79	-33.17	-30.74	-32.03	-23.52	33.59
9/29/2020	-20.24	-39.24	-50.49	-44.80	-32.75	-30.74	-32.03	-26.67	33.61
Manhattan Beach #1	-20.45	-39.0	-30.49	-44.80	-32.75	-30.70			evation: 128.71
Depth of Screen Interval	1050 1000	1570 1500	1250 1270	865-885	(10,((0	320-340		erence Point El	evation: 128./1
1 i	1950-1990	1570-1590	1250-1270 Pico Form. ²		640-660		180-200		
Aquifer Name ¹	Pico Form. ²	Pico Form. ²		Sunnyside ²	Sunnyside ²	Silverado	Gage		
12/11/2019	0.50	-1.91	-25.00	2.38	1.94	10.15	12.29		
2/25/2020	0.42	not measured	not measured	not measured	not measured	not measured	not measured		
2/26/2020	0.57	-2.03	not measured	not measured	not measured	not measured	not measured		
2/27/2020	not measured	not measured	-24.59	3.4	2.52	10.97	12.81		
3/18/2020	0.71	-1.65	-24.29	3.92	2.85	11.23	12.96		
7/28/2020	0.60	-1.81	-24.12	3.87	1.63	10.20	12.06		
9/22/2020	0.63	-1.79	-24.10	3.84	1.01	9.82	11.62		
Montebello #1							Refe	erence Point El	evation: 193.11
Depth of Screen Interval	900-960	690-710	500-520	370-390	210-230	90-110			
Aquifer Name ¹	Pico Form. ²	Sunnyside	Sunnyside	Silverado	Lynwood	Gage			
12/16/2019	59.73	55.10	54.48	52.15	52.36	Dry			
1/16/2020	64.06	62.69	62.08	58.61	53.43	Dry			
3/18/2020	62.72	61.35	60.83	57.33	52.30	Dry			
3/26/2020	64.17	64.08	63.57	59.81	52.28	Dry			
8/27/2020	73.54	73.46	72.73	67.96	56.11	Dry			
9/28/2020	73.98	74.61	73.99	69.04	56.28	Dry			
Norwalk #1							Re	ference Point E	levation: 96.18
Depth of Screen Interval	1400-1420	990-1010	720-740	430-450	220-240				
Aquifer Name ¹	Sunnyside	Silverado	Lynwood	Hollydale	Gage				
12/19/2019	26.43	-22.89	3.09	-10.44	-8.42				
3/13/2020	29.21	-19.60	6.36	-8.75	-6.65				
4/21/2020	31.68	-13.31	10.64	-5.93	-5.13				
6/29/2020	35.73	-14.29	10.33	-9.32	-6.52				
9/14/2020	35.03	-21.47	5.83	-10.97	-8.03				
Norwalk #2							Refe	erence Point El	evation: 116.73
Depth of Screen Interval	1460-1480	1260-1280	960-980	800-820	480-500	236-256			
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Gardena			
12/11/2019	4.95	4.98	-2.07	2.11	10.42	15.43			
3/16/2020	8.63	8.68	2.53	6.39	11.11	16.08			
4/28/2020	14.05	14.12	11.06	14.46	15.52	18.16			
	11.05	1 1.14	11.00						
	16.36	16.34	6.31	8.81	11.05	16.07			
6/29/2020 9/15/2020	16.36 12.90	16.34 12.82	6.31 0.29	8.81 3.18	11.05 8.93	16.07 14.45			

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1 GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020

Page 8 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZON	VE 9
Pico #1				<u>.</u>		<u>, </u>	Refe	rence Point Ele	vation:	182.89
Depth of Screen Interval	860-900	460-480	380-400	170-190						
Aquifer Name ¹	Pico Form. ²	Silverado	Silverado	Gardena ²						
12/15/2019	113.29	96.97	102.72	93.45						
3/15/2020	120.94	104.08	103.50	100.69						
4/28/2020	126.74	116.50	115.98	113.29						
9/15/2020	129.10	112.46	112.56	110.83						
9/22/2020	not measured	115.32	112.50	110.97						
Pico #2	not measured	115.52	114./1	110.77			Refe	erence Point Ele	vation:	151.83
Depth of Screen Interval	1180-1200	830-850	560-580	320-340	235-255	100-120				
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside	Silverado	Lynwood	Gaspur/Gage ²				
12/15/2019	49.92	54.53	56.83	76.19	74.89	81.94				
3/15/2020	54.34	55.00	58.64	76.39	77.36	83.05				
4/16/2020	66.01	67.63	69.98	82.49	81.38	92.74				
9/15/2020	not measured	57.30	62.43	76.51	not measured	77.58				
9/13/2020	62.98	56.34	60.95	70.31	71.15	77.17				
PM-1 Columbia	02.98	50.54	00.95	12.18	/1.15	//.1/	Det	ference Point El	avation	. 81 30
Depth of Screen Interval	555-595	460-500	240-280	160-200			Ke		evation.	01.39
Aquifer Name ¹	Silverado			Gardena						
*		Silverado	Lynwood							
12/11/2019	-0.62	-0.15	not measured	0.98						
3/23/2020	0.95	-2.91	not measured	-2.51						
9/23/2020	-0.41	-0.58	not measured	-2.37						
9/29/2020	-0.52	-0.76	not measured	not measured						
PM-2 Police Station		[[Ret	ference Point El	evation:	87.43
Depth of Screen Interval	635-655	520-540	370-390	240-260						
Aquifer Name ¹	Sunnyside ²	Silverado	Silver/Lyn ²	Lynwood						
12/11/2019	-4.63	1.87	2.14	2.27						
3/4/2020	-3.70	3.24	2.87	2.95						
3/17/2020	-3.47	3.08	3.08	3.24						
8/14/2020	-4.23	2.22	1.91	1.86						
9/21/2020	-4.67	0.46	0.95	1.06						
PM-3 Madrid			1	-			Re	ference Point El	evation	: 73.12
Depth of Screen Interval	640-680	480-520	240-280	145-185						
Aquifer Name ¹	Sunnyside ²	Silverado	Lynwood	Gardena						
12/13/2019	-5.04	-3.02	-2.27	-2.17						
3/16/2020	-3.30	-0.93	-0.94	-0.98						
3/23/2020	-3.13	-0.84	-0.84	-0.87						
8/6/2020	-3.66	-1.30	-1.23	-1.25						
10/7/2020	-4.20	-1.80	-1.71	-1.70						
PM-4 Mariner							Refe	rence Point Ele	vation:	100.38
Depth of Screen Interval	670-710	500-540	340-380	200-240						
Aquifer Name ¹	Sunnyside ²	Silverado	Lynwood	Gardena						
12/11/2019	0.02	0.66	4.59	4.64						
3/16/2020	2.21	2.14	5.58	5.63						
3/29/2020	2.47	2.84	6.24	6.27						
8/16/2020	0.79	0.42	3.73	3.77						
9/23/2020	0.36	-0.24	3.28	3.33						

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020Date 0 of 10

Page 9 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
PM-5 Columbia Park	•			•			Re	ference Point E	levation: 78.57
Depth of Screen Interval	1360-1380	940-960	770-790	580-600	320-340	140-160			
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside ²	Silverado	Lynwood ²	Gardena			
12/11/2019	-25.15	-24.68	-2.55	-1.51	4.36	4.50			
3/9/2020	-24.58	-25.85	2.06	1.45	5.46	5.61			
3/16/2020	-24.39	-26.39	0.57	1.76	5.57	5.74			
8/5/2020	-24.16	-29.05	-1.07	0.06	4.15	4.23			
9/21/2020	-24.22	-29.15	-1.55	-0.34	3.51	3.67			
PM-6 Madrona Marsh	21.22	27.10	1.55	0.51	5.51	5.07	Re	ference Point E	levation: 80.88
Depth of Screen Interval	1195-1235	905-925	770-790	530-550	390-410	240-260			
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood	Lynwood			
12/13/2019	-24.13	-6.77	-6.37	1.21	2.33	2.76			
3/17/2020	-24.13	-6.04	-5.42	2.03	3.15	3.53			
3/27/2020	-24.07	-5.63	-5.20	2.03	3.40	3.73			
8/13/2020	-25.78	-6.33	-5.67	1.59	2.75	3.13			
9/21/2020	-26.00	-6.69	-6.15	1.12	2.19	2.55	Def	D	146.51
Rio Hondo #1	1110 1120	010 020	710 720	420,450	200.200	140,160	Kere	erence Point Ele	evation: 146.51
Depth of Screen Interval	1110-1130 Pico Form. ²	910-930	710-730	430-450	280-300	140-160			
Aquifer Name ¹		Sunnyside ²	Sunnyside	Silverado	Hollydale	Gardena			
12/16/2019	43.79	44.79	44.12	38.78	44.72	47.68			
3/11/2020	46.18	44.74	44.00	36.78	42.45	45.94			
3/25/2020	47.94	50.51	49.91	42.70	46.16	48.84			
9/8/2020	53.51	54.23	53.50	37.82	43.03	47.32			
9/18/2020	52.80	54.24	53.54	37.82	42.43	46.57			
Seal Beach #1							R	eference Point	Elevation: 9.06
Depth of Screen Interval	1345-1365	1160-1180	1020-1040	775-795	605-625	215-235	60-70		
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside ²	Silverado	Lynwood ²	Gage	Artesia		
12/18/2019	-34.30	-34.50	-34.32	-43.58	-28.55	2.49	3.96		
3/17/2020	-22.66	-22.81	-22.72	-29.63	-23.01	3.52	4.85		
4/13/2020	-15.21	-15.29	-15.23	-18.87	-15.10	5.38	5.66		
6/29/2020	-20.64	-20.84	-20.69	-43.82	-30.18	1.81	4.17		
8/17/2020	-27.90	-28.10	-27.90	-50.60	-34.55	-2.16	2.80		
9/22/2020	-31.00	-31.25	-31.05	-56.07	-37.13	-2.18	2.58		
South Gate #1							Refe	erence Point Ele	evation: 102.50
Depth of Screen Interval	1440-1460	1320-1340	910-930	565-585	220-240				
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Silverado ²	Lynwood	Exposition ²				
12/9/2019	-10.99	-9.07	-5.17	-5.37	28.17				
3/16/2020	-9.20	-7.65	-4.45	-5.41	28.15				
4/20/2020	-5.33	-4.12	-1.03	-1.79	28.51				
9/16/2020	-13.43	-11.75	-8.53	-8.36	27.52				
9/24/2020	-13.47	-11.72	-8.61	-8.76	27.56				
South Gate #2							Refe	erence Point Ele	evation: 120.29
Depth of Screen Interval	1740-1760	1410-1430	1062-1082	670-690	410-430	205-225			
Aquifer Name ¹	Sunnyside ²	Sunnyside ²	Sunnyside	Silverado ²	Hollydale	Gaspur ²			
1/10/2020	-26.52	-27.28	-25.48	-20.56	35.07	41.16			
Westchester #1	2002	27.20	20110	20.00	55107		Refe	erence Point Ele	evation: 126.95
Depth of Screen Interval	740-760	560-580	455-475	310-330	215-235				120.70
Aquifer Name ¹	Pico Form. ²	Sunnyside ²	Sunnyside ²	Silverado	Jefferson	L			
12/18/2019	-0.63	8.91	9.36	9.60	9.66	L			
3/11/2020	-0.65	9.04	9.36	9.80	9.66				
7/11/2020	-0.13								
	0.10	0.14	0.50	0.00					
3/19/2020 7/31/2020	0.18	9.14 9.12	9.59 9.59	9.69 9.84	9.88 9.98				

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

TABLE 2.1GROUNDWATER ELEVATIONS, WATER YEAR 2019 - 2020Desc 10 of 10

Page 10 of 10

	ZONE 1	ZONE 2	ZONE 3	ZONE 4	ZONE 5	ZONE 6	ZONE 7	ZONE 8	ZONE 9
Whittier #1						nt Elevation: 21			
Depth of Screen Interval	1180-1200	920-940	600-620	450-470	200-220			2, 1 and 2) and 1	
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside	Silverado	Jefferson				
12/11/2019	101.02	100.97	95.29	93.92	195.77				
3/9/2020	101.02	101.06	95.58	94.29	196.24				
	_		95.63	94.29					
3/30/2020	101.12	101.06			196.63				
6/30/2020	101.52	101.52	96.70	95.57	196.96				
9/2/2020	101.90	101.89	97.25	96.26	196.69				
9/14/2020	101.83	101.94	97.21	96.43	196.60		L	L	
Whittier #2							Ref	erence Point Ele	evation: 167.55
Depth of Screen Interval	1370-1390	1090-1110	655-675	425-445	315-335	150-170			
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Sunnyside	Silverado	Silverado	Gage ²			
12/18/2019	69.68	70.57	64.68	68.01	88.35	95.86			
3/18/2020	72.39	73.28	67.68	70.33	92.49	98.94			
4/30/2020	77.90	78.64	79.00	77.74	100.01	104.13			
9/14/2020	79.50	80.15	73.04	66.45	92.70	100.70			
Whittier Narrows #1							Ref	erence Point Ele	evation: 214.66
Depth of Screen Interval	749-769	610-629	463-483	393-402	334-344	273-283	234-243	163-173	95-105
Aquifer Name ¹	Sunnyside	Sunnyside	Sunnyside	Silverado	Silverado	Lynwood	Lynwood	Gardena	Gaspur
10/30/2019	158.39	159.91	162.10	166.78	167.74	169.04	168.78	168.88	not measured
10/31/2019	not measured	not measured	not measured	not measured	not measured	not measured	not measured	not measured	169.90
4/30/2020	178.52	179.63	181.38	184.31	185.18	186.18	not measured	not measured	not measured
5/1/2020	not measured	not measured	not measured	not measured	not measured	not measured	186.71	186.48	186.44
9/17/2020	164.81	165.91	167.50	171.52	172.43	173.59	173.47	173.40	174.45
Whittier Narrows #2	104.01	105.71	107.50	171.52	1/2.43	175.57		erence Point Ele	
Depth of Screen Interval	659-678	579-598	469-488	419-428	328-338	263-273	214-223	136-145	91-100
Aquifer Name ¹	Pico Form. ²	Pico Form. ²	Pico Form. ²	Pico Form. ²	Pico Form. ²			Gardena ²	
						Lynwood	Lynwood		Gardena
10/31/2019	-19.67	-19.48	-19.02	-11.03	90.05	136.79	137.59	138.99	155.39
4/14/2020	-19.78	-17.73	-17.45	-11.15	101.23	not measured	not measured	not measured	not measured
4/15/2020	not measured	not measured	not measured	not measured	not measured	161.38	162.83	162.94	168.65
9/17/2020	-18.93	-18.58	-18.12	-11.1	90.17	146.65	147.38	148.23	159.45
Willowbrook #1			•			•	Re	ference Point E	levation: 98.87
Depth of Screen Interval	885-905	500-520	360-380	200-220					
Aquifer Name	Sunnyside ²	Silverado	Lynwood	Gage					
12/18/2019	-52.22	-39.33	-43.36	-42.31					
3/11/2020	-50.46	-38.61	-42.94	-42.05					
4/1/2020	-48.52	-38.10	-42.57	-41.65					
9/22/2020	-54.01	-41.81	-44.87	-43.93					
9/29/2020	-53.71	-41.84	-44.79	-43.88					
Wilmington #1	1			1			Re	ference Point E	levation: 40.74
Depth of Screen Interval	915-935	780-800	550-570	225-245	120-140				
Aquifer Name ¹	Sunnyside ²	Silverado	Silverado	Lynwood	Gage				
12/10/2019	-33.30	-33.73	-33.92	-9.56	-6.85				
2/24/2020	-32.48	-32.92	-33.13	-8.62	-5.90		L	L	L
3/17/2020	-33.54	-34.00	-34.19	-8.79	-5.97				
8/5/2020	-36.65	-37.04	-37.26	-9.75	-6.91				
9/22/2020	-30.03	-37.04	-37.98	-9.73	-6.26				
Wilmington #2	-37.30	-31.11	-37.90	-9.31	-0.20		D.	ference Point E	levation: 22.20
0	050.070	755 775	540.500	200 410	100 140		Ke	ference Point E	ievauon: 32.30
Depth of Screen Interval Aquifer Name	950-970 Sunnyside ²	755-775	540-560	390-410	120-140		ļ	ļ	
1	2	Silverado	Silverado	Lynwood	Gage				
12/10/2019	-22.68	-19.13	-15.52	-14.68	-1.64				
2/25/2020	-21.15	-18.15	-14.81	-14.01	-1.21				
3/17/2020	-22.58	-18.87	-14.97	-14.02	-1.18				
7/14/2020	-23.33	-19.10	-15.05	-14.10	-1.10				
8/4/2020	-24.01	-16.67	-15.52	-14.49	-1.07				

1 - Unless otherwise noted, aquifer designations are based on DWR's Bulletin 104.

2 - Aquifer designation is based on WRD's in-house interpretation.

Page 1 of 34

General Minerals Image: Constraint of the second	mg/l mg/l	TOW 1	Z MCL Type	Zon 4/21/2020 600 17 720 1.5 1300 19 5.9	9/9/2020 600 17 730 1.5 1300	Zon 4/21/2020 170 5.5 200 0.12	ne 2 9/9/2020 160 5.6 200	Zor 4/21/2020 160 5.2	ne 3 9/9/2020 160 5.3	Zor 4/21/2020 180 5.8	ne 4 9/9/2020 180 5.9	Zor 4/21/2020 180 7.7	ne 5 9/9/2020 180 7.6	Zor 4/21/2020 280 12	9/9/2020 270
General Minerals Image: Constraint of the second	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1		600 17 720 1.5 1300 19	600 17 730 1.5 1300	170 5.5 200	160 5.6	160 5.2	160	180	180	180	180	280	270
Anion Sum n Bicarbonate as HCO3 n Boron r Boron r Boronide u Calcium, Total r Carbon Dioxide r Carbon Dioxide r Carbonate as CO3 r Cation Sum n Chloride r Fluoride r Hydroxide as OH, Calculated r Iddide u Nitrate (as NO3) r Nitrate as Nitrogen r Yotal Sidum, Total r Sodium, Total r Solidum, Total r Total Dissolved Solid (TDS) r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Appent Color A Hardness (Total, as CaCO3) r Tab pH U Langelier Index - 25 degree N Odor T Specific Conductance um Turbidity N Metals Aluminum, Total Aluminum, Total u Barjum, Total u Beryllium, Total u	meq/l mg/l ug/l mg/l		N	17 720 1.5 1300 19	17 730 1.5 1300	5.5 200	5.6	5.2							
Bicarbonate as HCO3 r Boron r Boronide r Bromide r Calcium, Total r Carbon Dioxide r Carbon Dioxide r Carbonate as CO3 r Cation Sum n Chloride r Fluoride r Hydroxide as OH, Calculated r Iodide n Nitrate (as NO3) r Nitrate as Nitrogen r Sulfate r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Turbidity N Metals Aluminum, Total Aluminum, Total r Bargenic, Total r Beryllium, Total r	mg/l mg/l ug/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l m		N	720 1.5 1300 19	730 1.5 1300	200			5.3	5.8	5.9	7.7	76	12	
Boron r Bromide u Calcium, Total r Carbon Dioxide r Carbon Dioxide r Carbon Sum m Chloride r Fluoride r Hydroxide as OH, Calculated r Iodide r Nitrate (as NO3) r Nitrate (as NO3) r Nitrate (as NO3) r Sulfate r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Aparent Color A Hardness (Total, as CaCO3) r Lab pH U Langelier Index - 25 degree N Odor T Specific Conductance um Turbidity N Metals Antimony, Total Antimuny, Total u Beryllium, Total u Cadmium, Total u	mg/l ug/l mg/l		N	1.5 1300 19	1.5 1300		200								12
Bromide I Calcium, Total r Carbonate as CO3 r Cation Sum r Cation Sum r Chloride r Fluoride r Indide r Iodide r Iodide r Iodide r Nitrate (as NO3) r Nitrate (as NO3) r Nitrate (as NO3) r Nitrite, as Nitrogen r Potassium, Total r Sodium, Total r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Specific Conductance Im Turbidity N Metals Aluminum, Total Aluminum, Total r Baryum, Total r Beryllium, Total r Beryllium, Total r	ug/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l m		N	1300 19	1300	0.12	0.12	200	190	210	210	220	220	340	330
Calcium, Total r Carbon Dioxide r Carbon Dioxide r Carbon Dioxide r Carbonate as CO3 r Cation Sum n Chloride r Fluoride r Hydroxide as OH, Calculated r Iodide u Nitrate (as NO3) r Nitrate as Nitrogen r Nitrite, as Nitrogen r Sodium, Total r Sodium, Total r Solifate r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r Apparent Color A Apparent Color A Hardness (Total, as CaCO3) r Tab pH U Langelier Index - 25 degree N Odor T Specific Conductance um Turbidity N Metals Aluminum, Total Aluminum, Total u Beryllium, Total u Beryllium, Total u <td>mg/l mg/l mg/l mg/l mg/l ug/l mg/l mg/l mg/l mg/l</td> <td></td> <td></td> <td>19</td> <td></td> <td>130</td> <td>0.13</td> <td>0.12</td> <td>0.12</td> <td>0.14</td> <td>0.14 130</td> <td>0.13</td> <td>0.13 180</td> <td>0.16 410</td> <td>0.16 420</td>	mg/l mg/l mg/l mg/l mg/l ug/l mg/l mg/l mg/l mg/l			19		130	0.13	0.12	0.12	0.14	0.14 130	0.13	0.13 180	0.16 410	0.16 420
Carbon Dioxide r Carbonate as CO3 r Cation Sum n Chloride r Fluoride r Hydroxide as OH, Calculated r Indide n Nitrate (as NO3) r Nitrate as Nitrogen r Nitrate as Nitrogen r Sulfate r Sodium, Total r Sulfate r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Turbidity N Metals Aluminum, Total Aluminum, Total u Barium, Total u Beryllium, Total u Cadmium, Total u	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l				16	50	52	44	45	57	57	74	74	120	120
Carbonate as CO3 r Cation Sum m Chloride r Fluoride r Hydroxide as OH, Calculated r Iodide u Nitrate as Nitrogen r Nitrite, as Nitrogen r Sodium, Total r Sodium, Total r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Specific Conductance im Turbidity N Metals Aluminum, Total Antimony, Total u Barium, Total u Beryllium, Total u Cadmium, Total u Cadmium, Total u	mg/l meq/l mg/l mg/l ug/l mg/l mg/l mg/l mg/l				6	2.6	ND	2.1	2	2.2	2.2	2.9	4.5	5.6	8.6
Cation Sum n Chloride n Fluoride n Fluoride n Fluoride n Iodide n Nitrate (as NO3) n Nitrate as Nitrogen n Potassium, Total n Sodium, Total n Total Dissolved Solid (TDS) n Total Nitrogen, Nitrate+Nitrite n General Physical Properties Apparent Color Hardness (Total, as CaCO3) n Specific Conductance nm Turbidity N Metals Aluminum, Total Antimony, Total n Barquin, Total n	meq/l mg/l mg/l ug/l mg/l mg/l mg/l mg/l			9.3	9.5	ND	2.6	2	2	2.2	2.2	ND	ND	2.2	ND
Fluoride r Hydroxide as OH, Calculated r Iodide r Iodide r Iodide r Nitrate (as NO3) r Nitrate as Nitrogen r Potassium, Total r Sodium, Total r Sulfate r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Aparent Color Aparent Color A Hardness (Total, as CaCO3) r Lab pH U Deperite Conductance um Turbidity N Metals Aluminum, Total Antimony, Total u Barium, Total u Beryllium, Total u Cadmium, Total u	mg/l mg/l mg/l mg/l mg/l mg/l			15	15	5.3	5.5	5.1	5.2	5.8	5.8	7.4	7.4	11	12
Hydroxide as OH, Calculated r Iodide v Nitrate (as NO3) r Nitrate as Nitrogen r Nitrite, as Nitrogen r Sodium, Total r Sodium, Total r Total Dissolved Solid (TDS) r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color A Hardness (Total, as CaCO3) r Lab pH U Langelier Index - 25 degree M Odor T Specific Conductance im Turbidity N Metals Aluminum, Total t Baryum, Total t Baryum, Total t Cadmium, Total t	mg/l ug/l mg/l mg/l mg/l mg/l	2	S	170	180	21	23	29	30	26	29	52	52	100	100
Iodide 1 Nitrate (as NO3) r Nitrate (as NItrogen r Nitrate as Nitrogen r Potassium, Total r Sodium, Total r Sulfate r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Hardness (Total, as CaCO3) r Specific Conductance Im Turbidity N Metals Aluminum, Total Antimony, Total u Barquin, Total u Barguin, Total u Codmium, Total u	ug/l mg/l mg/l mg/l mg/l		Р	0.39	0.39	0.23	0.22	0.4	0.4	0.42	0.4	0.36	0.37	0.35	0.35
Nitrate (as NO3) r Nitrate as Nitrogen r Nitrate as Nitrogen r Nitrite, as Nitrogen r Potassium, Total r Sodium, Total r Sulfate r Total Dissolved Solid (TDS) r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Lab pH L Codor T Odor T Specific Conductance Im Turbidity N Metals Aluminum, Total Antimony, Total u Barium, Total u Beryllium, Total u Cadmium, Total u	mg/l mg/l mg/l mg/l mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen r Nitrite, as Nitrogen r Potassium, Total r Sodium, Total r Sulfate r Total Dissolved Solid (TDS) r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color A Hardness (Total, as CaCO3) r Lab pH U Langelier Index - 25 degree N Odor T Specific Conductance Im Turbidity N Metals A Aluminum, Total U Barium, Total U Barium, Total U Cadmium, Total U	mg/l mg/l mg/l mg/l	45	D	310 ND	420 ND	27 ND	32 ND	33 ND	44 ND	29 ND	29 ND	1.6 9.5	1.6 9.2	ND 6.6	ND 6.9
Nitrite, as Nitrogen r Potassium, Total r Sodium, Total r Sulfate r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apaparent Color Apparent Color A Hardness (Total, as CaCO3) r I.ab pH U Langelier Index - 25 degree M Odor T Specific Conductance Im Turbidity N Metals Aluminum, Total Antimony, Total t Baryum, Total t Beryllium, Total t Cadmium, Total t	mg/l mg/l mg/l	10	P P	ND	ND	ND	ND	ND	ND	ND	ND	2.2	2.1	1.5	1.6
Potassium, Total r Sodium, Total r Sulfate r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Lab pH L Codor T Odor T Specific Conductance Im Turbidity N Metals Aluminum, Total Antimony, Total u Barium, Total u Beryllium, Total u Cadmium, Total u	mg/l mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium, Total r Sulfate r Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Lab pH U Dagelier Index - 25 degree N Odor T Turbidity N Metals Aluminum, Total Antimony, Total U Barium, Total U Beryllium, Total U Cadmium, Total U	mg/l	-		5.1	5.5	2.2	2.4	3.1	3.3	3	3.1	2.6	2.8	2.6	2.8
Total Dissolved Solid (TDS) r Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Lab pH U Langelier Index - 25 degree N Odor T Specific Conductance im Turbidity N Metals Aluminum, Total Arsenic, Total t Baryllum, Total t Cadmium, Total t	ma/l			310	320	45	47	45	46	41	41	48	49	58	59
Total Nitrogen, Nitrate+Nitrite r General Physical Properties Apparent Color Apparent Color A Hardness (Total, as CaCO3) r Lab pH U Langelier Index - 25 degree N Odor T Specific Conductance um Turbidity N Metals Aluminum, Total Antimony, Total u Barium, Total u Beryllium, Total u Cadmium, Total u	g/1	500	S	1.8	0.74	78	79	56	57	73	75	110	110	160	160
General Physical Properties Apparent Color A Hardness (Total, as CaCO3) r Lab pH L Langelier Index - 25 degree N Odor T Specific Conductance Im Turbidity N Metals A Aluminum, Total Im Barium, Total Im Barium, Total Im Cadmium, Total Im	mg/l	1000	S	960	990	330	320	310	290	320	330	480	450	700	690
Apparent Color A Hardness (Total, as CaCO3) r Lab pH L Langelier Index - 25 degree N Odor T Specific Conductance Im Turbidity N Metals Aluminum, Total Antimony, Total Im Barium, Total Im Beryllium, Total Im Cadmium, Total Im	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	2.2	2.1	1.5	1.6
Hardness (Total, as CaCO3) r Lab pH U Langelier Index - 25 degree N Odor T Specific Conductance im Turbidity N Metals Aluminum, Total u Antimony, Total u Barium, Total u Barglium, Total u Cadmium, Total u	ACT	16	<u> </u>	150	100	MID	NID	ND	ND	NID	NID	NID	NID	-	ND
Lab pH L Langelier Index - 25 degree N Odor T Specific Conductance µm Turbidity N Metals Aluminum, Total Antimony, Total µ Barium, Total µ Beryllium, Total µ Cadmium, Total µ	ACU ma/l	15	S	150	180	ND 160	ND 170	ND 150	ND	ND 200	ND 200	ND 260	ND 260	5	ND 420
Langelier Index - 25 degree N Odor T Specific Conductance Im Turbidity N Metals Aluminum, Total Antimony, Total Im Barium, Total Im Barium, Total Im Cadmium, Total Im	mg/l Units			74 8.3	64 8.3	160 8.1	8.3	150 8.2	150 8.2	200 8.2	8.2	260 8.1	7.9	430 8	430 7.8
Odor T Specific Conductance Im Turbidity N Metals Im Aluminum, Total Im Antimony, Total Im Barium, Total Im Barium, Total Im Cadmium, Total Im	None			0.95	0.9	0.68	0.84	0.68	0.67	0.84	0.79	0.87	0.71	0	0.99
Specific Conductance im Turbidity N Metals Aluminum, Total Antimony, Total u Arsenic, Total u Barium, Total u Cadmium, Total u	TON	3	S	2	8	1	1	1	ND	1	ND	1	ND	1.1	ND
Metals Aluminum, Total Aluminony, Total Maximum, Total Arsenic, Total Maximum, Total Barium, Total Maximum, Total Cadmium, Total Maximum, Total	mho/cn	1600	S	1600	1600	540	530	510	520	560	560	740	720	1100	1000
Aluminum, Total u Antimony, Total u Arsenic, Total u Barium, Total u Gadmium, Total u Cadmium, Total u	NTU	5	S	0.57	0.63	0.13	ND	0.18	0.13	0.14	0.14	0.2	0.2	3.5	2.8
Antimony, Total u Arsenic, Total u Barium, Total u Beryllium, Total u Cadmium, Total u															
Arsenic, Total T Barium, Total T Beryllium, Total T Cadmium, Total T	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium, Total u Beryllium, Total u Cadmium, Total u	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beryllium, Total u Cadmium, Total u	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	3.2	3.1	1.3	1.1
Cadmium, Total	ug/l	1000	Р	25 ND	20	38	37	38	36	86 ND	80 ND	250	230	140	140
	ug/l	4	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/l ug/l	5 50	P P	ND	1.3	ND	ND	ND	ND	ND	ND	2.2	2.1	4.2	4.5
	ug/l	50	r	0.088	0.044	0.021	ND	ND	ND	ND	ND	2.2	1.8	4.2	4.1
	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	mg/l	0.3	S	0.08	0.069	0.021	0.022	ND	ND	ND	ND	ND	ND	ND	ND
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total N	None			6.4	5.9	9.8	10	10	10	13	13	18	18	32	32
	ug/l	50	S	38	29	74	70	50	49	68	66	ND	2.1	ND	ND
-	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	100 50	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 5	ND ND
· · · · · ·	ug/l ug/l	100	P S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	Ũ														
8 I	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beillene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	0.73
	ug/l ug/l	70	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/l ug/l	6	Р	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	0.83	0.9
	ug/l		Ľ.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	13	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	100	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
	ug/l ug/l	5	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/1 ug/1	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	2.2	1.8	45	43
Vinyl chloride (VC)	•					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	0.5	Р	ND	ND	ND	ND						112	112	
Others	ug/l ug/l	0.5 1750		ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l		Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ug/l ug/l	1750 1	P N	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Surfactants r Total Organic Carbon r	ug/l		Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Page 2 of 34

Constitution of the	Constituents		Bell Gardens #1								
Constituents	Units	MCL	MCL Type	Zone 1 4/22/2020	Zone 2 4/22/2020	Zone 3 4/22/2020	Zone 4 4/22/2020	Zone 5 4/22/2020	Zone 6 4/22/2020		
General Minerals	_		1								
Alkalinity	mg/l			160	160	140	110	130	140		
Anion Sum	meq/l			7.3	5.3	6.8	5.1	5.4	6.3		
Bicarbonate as HCO3 Boron	mg/l	1	N	200 ND	200 0.12	170 0.17	140 0.12	160 0.13	0.13		
Bromide	mg/l ug/l	1	IN	120	120	130	82	130	110		
Calcium, Total	mg/l			95	43	70	46	50	63		
Carbon Dioxide	mg/l			2.1	ND	2.2	2.3	3.3	2.8		
Carbonate as CO3	mg/l			2	2.6	ND	ND	ND	ND		
Cation Sum	meq/l			7.1	5.1	6.8	4.9	5.1	6.1		
Chloride	mg/l	500		48	35	63	47	43	63		
Fluoride	mg/l	2	Р	0.2	0.27	0.31	0.39	0.24	0.31		
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND		
Iodide	ug/l	15	_	7.8	14	ND	ND	ND	ND		
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND	9.9	8.8 2	9.4 2.1	12 2.8		
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	2.8 ND		
Potassium, Total	mg/l	1	1	1.9	2.2	3.2	2.7	2.6	3.1		
Sodium, Total	mg/l			28	52	50	42	40	43		
Sulfate	mg/l	500	S	120	49	98	66	65	77		
Total Dissolved Solid (TDS)	mg/l	1000		420	290	410	300	310	350		
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	2.2	2	2.1	2.8		
General Physical Properties											
Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	ND		
Hardness (Total, as CaCO3)	mg/l			290	140	220	150	160	210		
Lab pH	Units			8.2	8.3	8.1	8	7.9	8		
Langelier Index - 25 degree Odor	None TON	3	0	1	0.75	0.7	0.39	0.36	0.54		
Specific Conductance	umho/cn		S S	690	510	680	510	530	630		
Turbidity	NTU	5	S	0.19	0.38	0.12	0.16	0.15	0.12		
Metals		2	5	0117	0.50	0.112	0110	0.12	0.12		
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND		
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND		
Arsenic, Total	ug/l	10	Р	3.2	ND	2.6	2.2	1.1	1.4		
Barium, Total	ug/l	1000	Р	110	78	120	55	62	64		
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND		
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND		
Chromium, Total	ug/l	50	Р	ND	ND	ND 0.49	ND	ND	ND		
Hexavalent Chromium (Cr VI) Copper, Total	ug/l	1300	Р	0.026 ND	0.021 ND	0.48 ND	0.54 ND	0.69 ND	0.57 ND		
Iron, Total	ug/l mg/l	0.3	P S	0.037	ND	ND	ND	ND	ND		
Lead, Total	ug/l	15		ND	ND	ND	ND	ND	ND		
Magnesium, Total	None	10	-	13	8.2	12	8.3	9.8	12		
Manganese, Total	ug/l	50	S	28	42	ND	ND	ND	ND		
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND		
Nickel, Total	ug/l	100	Р	ND	ND	ND	ND	ND	ND		
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND		
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND		
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND		
Zinc, Total Volatile Organic Compounds	ug/l	5000	S	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND		
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND		
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND		
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND		
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND		
Di-Isopropyl Ether	ug/l	200	P	ND	ND	ND	ND	ND	ND		
Ethylbenzene Ethyl Tert Butyl Etheı	ug/l ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Ethyl Tert Butyl Ethei	ug/l ug/l	150	Р	ND	ND	ND	ND	ND	ND		
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND		
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND		
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND		
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND		
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND		
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	0.52	0.84		
Toluene	ug/l	150		ND	ND	ND	ND	ND	ND		
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	0.53	1.6		
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND		
Trichloroethylene (TCE)	ug/l	5	P	ND ND	ND	ND	ND	ND	ND		
Vinyl chloride (VC) Xylenes (Total)	ug/l ug/l	0.5 1750	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		
Others	ug/1	1/30	r	nD		IND	ND	мD	ND		
1,4-Dioxane	ug/l	1	N	2.6	ND	1.4	ND	ND	ND		
Perchlorate	ug/l	6	P	ND	ND	0.57	ND	0.55	ND		
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND		
Total Organic Carbon	mg/l	-		ND	ND	ND	ND	ND	ND		

Page 3 of 34

Constituents			ype			Cerritos #1						
Constituents	Units	MCL	MCL Type	Zone 1 3/11/2020	Zone 2 3/11/2020	Zone 3 3/11/2020	Zone 4 3/11/2020	Zone 5 3/11/2020	Zone 6 3/11/2020			
General Minerals												
Alkalinity	mg/l			160	160	170	180	180	190			
Anion Sum	meq/l			4.8	4.2	5.2	4.9	4.6	4.6			
Bicarbonate as HCO3	mg/l	1		200	190	200	220	220	230			
Boron Bromide	mg/l	1	N	0.087 45	0.056 47	0.085	0.085	0.084 40	0.076			
Calcium, Total	ug/l mg/l			37	37	42	49	40	46			
Carbon Dioxide	mg/l			2.1	2	2.6	3.6	3.6	3.8			
Carbon Dioxide Carbonate as CO3	mg/l			2.1	2	2.0 ND	ND	ND	ND			
Cation Sum	meq/l			4.8	4.3	5.1	4.9	4.6	4.6			
Chloride	mg/l	500	S	14	12	20	14	11	9.9			
Fluoride	mg/l	2	Р	0.28	0.33	0.41	0.54	0.44	0.33			
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND			
Iodide	ug/l			9.2	16	27	21	18	ND			
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND			
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND			
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND			
Potassium, Total	mg/l			2	1.8	1.8	1.7	1.6	1.8			
Sodium, Total	mg/l			57	44	56	38	40	34			
Sulfate	mg/l	500		50	32	61	43	30	25			
Total Dissolved Solid (TDS)	mg/l	1000		270	250	310	280	260	260			
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND			
General Physical Properties Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	ND			
Apparent Color Hardness (Total, as CaCO3)	MCU mg/l	15	5	ND 110	120	130	ND 160	140	150			
Lab pH	Units			8.2	8.2	8.1	8	8	8			
Lab pH Langelier Index - 25 degree	None			0.66	0.57	0.57	0.55	0.48	0.56			
Odor	TON	3	S	0.00	0.37	1	1	1	8			
Specific Conductance	umho/cm			460	410	480	450	430	420			
Turbidity	NTU	5	S	0.19	ND	0.19	0.34	0.19	0.38			
Metals												
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND			
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND			
Arsenic, Total	ug/l	10	Р	14	10	19	5.6	8.9	34			
Barium, Total	ug/l	1000	Р	51	110	140	62	83	100			
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND			
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND			
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND			
Hexavalent Chromium (Cr VI)	ug/l			0.12	0.17	0.12	0.11	0.15	0.12			
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND			
Iron, Total	mg/l	0.3	S	ND	0.13	0.029	0.085	0.064	0.084			
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND 9			
Magnesium, Total Manganese, Total	None ug/l	50	S	4.9 25	5.8 32	6.2 45	11 78	9.6 120	140			
Mercury	ug/l	2	P	ND 25	ND S2	4J ND	ND	ND	ND			
Nickel, Total	ug/1 ug/1	100		ND	ND	ND	ND	ND	ND			
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND			
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND			
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND			
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND			
Volatile Organic Compounds												
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND			
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND			
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND			
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND			
Carbon Tetrachloride	ug/l	0.5		ND	ND	ND	ND	ND	ND			
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND			
Chloromethane (Methyl Chloride)	ug/l	6	2	ND ND	ND	ND ND	ND ND	ND ND	ND ND			
cis-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l	6	Р	ND	ND ND	ND	ND	ND	ND			
Ethylbenzene	ug/l ug/l	300	Р	ND	ND	ND	ND	ND	ND			
Ethyl Tert Butyl Ether	ug/1 ug/1	500	1	ND	ND	ND	ND	ND	ND			
Freon 11	ug/1 ug/1	150	Р	ND	ND	ND	ND	ND	ND			
Freon 113	ug/1 ug/1	1200		ND	ND	ND	ND	ND	ND			
Methylene Chloride	ug/1	5	P	ND	ND	ND	ND	ND	ND			
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND			
Styrene	ug/l	100	Р	ND	ND	ND	ND	ND	ND			
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND			
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND			
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND			
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND			
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND			
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND			
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND			
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND			
Others												
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND			
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND			
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND 0.24			
Total Organic Carbon	mg/l			ND	ND	ND	ND	ND	0.34			

Page 4 of 34

Constitution of the			Čerritos #2												
Constituents	Units	MCL	MCL Type	Zor 3/9/2020	ne 1 9/17/2020	Zoi 3/9/2020	ne 2 9/17/2020	Zoi 3/9/2020	ne 3 9/17/2020	Zot 3/9/2020	ne 4 9/17/2020	Zoi 3/9/2020	ne 5 9/17/2020	Zoi 3/9/2020	ne 6 9/17/2020
General Minerals	ſ	4	2	3/9/2020	9/1//2020	3/9/2020	9/1//2020	3/9/2020	9/1//2020	3/9/2020	9/1//2020	3/9/2020	9/1//2020	3/9/2020	9/1//2020
Alkalinity	mg/l			150	150	170	160	160	160	180	180	180	180	330	340
Anion Sum	meq/l			3.6	3.6	8.1	8.2	3.7	3.8	4.2	4.2	4.1	4.1	12	12
Bicarbonate as HCO3	mg/l	1		180	180	200	200	200	200	220	220	220	220	410	410
Boron Bromide	mg/l ug/l	1	N	0.053	ND 23	0.16	0.15	0.058	0.051 20	0.074	0.063	0.072	0.061	0.11 220	0.094 230
Calcium, Total	mg/l			42	42	86	84	45	47	52	52	52	51	150	150
Carbon Dioxide	mg/l			3	ND	5.2	4.1	2.6	2.1	3.6	2.9	3.6	2.9	13	11
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			3.7	3.6	7.9	7.8	3.8	3.9	4.3	4.2	4.2	4.1	12	12
Chloride	mg/l	500 2	S	5.8 0.28	6.4 0.28	76 0.38	81 0.37	4.9 0.29	5.6 0.29	5.9 0.41	6.4 0.41	5.5 0.34	6.2 0.35	72 0.35	78 0.34
Fluoride Hydroxide as OH, Calculated	mg/l mg/l	2	Р	0.28 ND	0.28 ND	0.38 ND	ND	0.29 ND	0.29 ND	ND	ND	0.34 ND	ND	ND	0.34 ND
Iodide	ug/l			2	1.9	5.3	7.2	5.3	5.6	6.6	6.4	7.1	5.6	20	20
Nitrate (as NO3)	mg/l	45	Р	ND	ND	13	13	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	2.9	2.9	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND 2.4	ND 2.5	ND	ND	ND	ND	ND 2.4	ND 25	ND 2.5	ND	ND	ND 4.2
Potassium, Total Sodium, Total	mg/l mg/l			2.4 24	2.5 24	4 50	4.1 50	2.2 23	2.3 24	2.4 21	2.5 20	2.5 21	2.6 21	4.1 49	4.2 48
Sulfate	mg/l	500	S	24	21	110	120	16	17	18	18	16	16	160	170
Total Dissolved Solid (TDS)	mg/l	1000	S	190	210	460	480	200	230	230	230	230	230	640	720
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	2.9	2.9	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties															
Apparent Color	ACU ma/l	15	S	ND 120	ND 120	ND 280	ND 280	ND	ND	ND 160	ND	ND	ND	ND 490	ND 490
Hardness (Total, as CaCO3) Lab pH	mg/l Units	<u> </u>	-	130 8	130 8.2	280 7.8	280	140 8.1	140 8.2	160	160 8.1	160	160 8.1	490	490 7.8
Lao pH Langelier Index - 25 degree	None			8 0.47	0.61	0.58	0.7	0.59	0.69	0.65	0.73	0.61	0.71	1	1.1
Odor	TON	3	S	2	ND	1	ND	2	2	2	2	2	2	2	2
Specific Conductance	umho/cm		S	350	340	760	790	340	340	380	400	390	380	1100	1100
Turbidity	NTU	5	S	0.12	0.22	0.18	0.23	0.67	1.1	0.22	0.16	0.21	0.19	2.7	2.5
Metals		1000	n	ND	ND										
Aluminum, Total Antimony, Total	ug/l ug/l	1000 6	P P	ND ND	ND ND										
Arsenic, Total	ug/l	10	P	2.3	2.4	1.9	2.1	3.1	3.2	7.5	7.4	17	18	3.8	3.8
Barium, Total	ug/l	1000	Р	110	110	130	130	120	120	170	170	180	180	120	130
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l	50	Р	ND 0.33	ND 0.24	ND 0.72	ND 0.65	ND 0.18	ND ND	ND 0.15	ND ND	ND 0.11	ND ND	ND 0.07	ND ND
Copper, Total	ug/l ug/l	1300	Р	ND	0.24 ND	0.72 ND	ND	0.18 ND	ND	ND	ND	ND	ND	0.07 ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	0.036	0.034	0.072	0.068	0.38	0.38
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND
Magnesium, Total	None			5.2	5.2	16	16	5.8	6	8.3	8.2	7.2	7	29	29
Manganese, Total	ug/l	50	S	5.8	5.7	ND	ND	38	39	88	94	110	120	280	290
Mercury Nickel, Total	ug/l ug/l	2 100	P P	ND ND	ND ND										
Selenium, Total	ug/l	50	P	ND	ND										
Silver, Total	ug/l	100	S	ND	ND										
Thallium, Total	ug/l	2	Р	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND										
Volatile Organic Compounds	4	_		ND	ND										
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	5	P P	ND ND	ND ND										
1,2-Dichloroethane	ug/l	0.5	P	ND	ND										
Benzene	ug/l	1	Р	ND	ND										
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND										
Chlorobenzene	ug/l	70	Р	ND	ND										
Chloromethane (Methyl Chloride)	ug/l	6	P	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
cis-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l ug/l	6	Р	ND ND	ND ND										
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ethe	ug/l			ND	ND										
Freon 11	ug/l	150	Р	ND	ND										
Freon 113	ug/l	1200		ND	ND										
Methylene Chloride	ug/l	5	Р	ND	ND										
MTBE Styrene	ug/l ug/l	13 100	P P	ND ND	ND ND										
Tert Amyl Methyl Ether	ug/l	100	ŕ	ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND										
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	Р	ND	ND										
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l	10 5	P P	ND ND	ND ND										
Vinyl chloride (VC)	ug/l ug/l	0.5	P P	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND
Xylenes (Total)	ug/l	1750		ND	ND										
Others	<i>a</i> .		Ľ.	-	-	-	-			-	-			-	
1,4-Dioxane	ug/l	1	Ν	ND	ND	3.1	3.4	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	0.67	0.69	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND 0.44	ND 0.48	ND	ND 0.21	ND	ND 0.26	ND	ND 0.22	ND 0.08	ND 0.02
Total Organic Carbon	mg/l	I	L	ND	ND	0.44	0.48	ND	0.21	ND	0.26	ND	0.23	0.98	0.92

Page 5 of 34

			'pe			Comm	nerce #1		
Constituents	Units	MCL	MCL Type	Zone 1 7/8/2020	Zone 2 4/29/2020	Zone 3 4/29/2020	Zone 4 4/29/2020	Zone 5 4/29/2020	Zone 6 4/29/2020
General Minerals	1	~	N	//8/2020	4/29/2020	4/29/2020	4/29/2020	4/29/2020	4/29/2020
Alkalinity	mg/l			460	310	240	190	170	200
Anion Sum	meq/l			210	11	8.4	8.1	7.7	8.4
Bicarbonate as HCO3	mg/l			560	380	300	230	210	240
Boron	mg/l	1	Ν	6.1 44000	0.66	0.25	0.23	0.16 410	0.12
Bromide Calcium, Total	ug/l			180	43	580 54	330 42	61	340
Carbon Dioxide	mg/l mg/l			180	45	3.9	42	4.3	5
Carbonate as CO3	mg/l			ND	3.1	2.4	ND	ND	ND
Cation Sum	meq/l			190	10	8.1	7.7	7.6	8.2
Chloride	mg/l	500	S	7200	170	110	80	94	87
Fluoride	mg/l	2	Р	0.19	0.4	0.34	0.48	0.34	0.42
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
odide	ug/l			9400	300	150	66	40	ND
Nitrate (as NO3)	mg/l	45		ND	ND	ND	ND	18	39
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	4.1	8.9
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			42	5.6	3.4	3.2	2.1	1.8
Sodium, Total Sulfate	mg/l	500	0	3900 3.5	140 3.6	86 23	96 94	70 62	53 64
Sulfate Fotal Dissolved Solid (TDS)	mg/l mg/l	500 1000		3.5 12000	3.6 610	480	94 490	62 470	64 510
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S P	12000 ND	ND 610	480 ND	490 ND	4.1	8.9
General Physical Properties	mg/1	10	r	ND	14D		ND	7.1	0.7
Apparent Color	ACU	15	S	65	25	5	3	ND	ND
Hardness (Total, as CaCO3)	mg/l			1000	190	210	170	220	290
Lab pH	Units			7.7	8.1	8.1	8.1	7.9	7.9
Langelier Index - 25 degree	None			1.2	0.84	0.84	0.6	0.54	0.76
Ddor	TON	3	S	8	17	2	2	2	2
Specific Conductance	umho/cm			21000	1100	840	810	780	840
Furbidity	NTU	5	S	64	0.22	0.1	0.17	0.18	0.47
Metals									
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	22	ND	ND	ND	ND	ND
Barium, Total	ug/l	1000		640	72	88	230	62	80
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	6.9	12
Hexavalent Chromium (Cr VI)	ug/l	1200	n	ND	0.11	0.033	0.022	7.2	11 ND
Copper, Total ron, Total	ug/l	1300		ND 0.62	ND ND	ND 0.021	ND 0.091	ND ND	ND
Lead, Total	mg/l ug/l	0.3	S P	0.62 ND	ND	0.021 ND	ND	ND	ND
Magnesium, Total	None	15	r	140	20	19	17	17	24
Manganese, Total	ug/l	50	S	120	8.8	48	56	6.2	ND
Mercury	ug/1	2	Р	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100		ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	88	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND
Zine, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds									
,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND
,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND
,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride) is-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
is-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l ug/l	6	Р	ND	ND	ND	ND	ND ND	ND
thylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND
thyl Tert Butyl Ether	ug/l	500	1	ND	ND	ND	ND	ND	ND
reon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND
reon 113	ug/1 ug/1	1200		ND	ND	ND	ND	ND	ND
Aethylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND
ITBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND
tyrene	ug/l	100		ND	ND	ND	ND	ND	ND
ert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND
etrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	0.84	ND
oluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND
otal Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	1
rans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	4.5	ND
/inyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Kylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others	-								
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	5.8	1.6	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	3.4	5.1
Surfactants	mg/l	0.5	S	0.26	ND	ND	ND	ND	ND
Fotal Organic Carbon	mg/l			13	4.6	1.2	0.69	0.36	ND

Page 6 of 34

Constituents			ype				Comp	ton #1			
Constituents	Units	MCL	MCL Type	Zor 4/20/2020	ne 1 8/24/2020	Zo: 4/20/2020	ne 2 8/24/2020	Zor 4/20/2020	ne 3 8/24/2020	Zo 4/20/2020	ne 4 8/24/2020
General Minerals											
Alkalinity	mg/l			120	120	140	140	160	160	170	170
Anion Sum	meq/l			4.2	4.2	4.6	4.6	5.1	5.1	5.6	5.5
Bicarbonate as HCO3	mg/l	1		150 0.15	140 ND	170 0.097	170 0.097	190 0,1	190 ND	210 0.087	200 ND
Boron Bromide	mg/l ug/l	1	N	100	100	120	110	140	140	100	100
Calcium, Total	mg/l			21	27	38	37	49	56	61	67
Carbon Dioxide	mg/l			ND	ND	ND	ND	2	2	2.7	2.6
Carbonate as CO3	mg/l			2.4	ND	2.2	2.2	2	2	ND	ND
Cation Sum	meq/l			3.9	4.9	4.5	4.5	4.9	5.8	5.5	6.1
Chloride	mg/l	500	S	19	20	22	22	24	24	22	22
Fluoride	mg/l	2	Р	0.31	0.3	0.37	0.36	0.3	0.3	0.28	0.28
Hydroxide as OH, Calculated	mg/l		1	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			28	25	30	29	35	36	29	28
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			1.2	ND	1.4	1.6	2.3	ND	2.2	ND
Sodium, Total	mg/l			62	75	53	54	40	50	44	50
Sulfate	mg/l	500	S	56	57	53	53	58	58	74	74
Total Dissolved Solid (TDS)	mg/l	1000		240	260	260	280	290	300	320	330
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties	ACU	15	0	20	ND	5	5	5	ND	ND	ND
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	20 59	ND 81	5	5 100	5 160	ND 180	ND 180	ND 200
Lab pH	mg/l Units			8.4	81	8.3	8.3	8.2	8.2	8.1	8.1
Lab pH Langelier Index - 25 degree	None			0.45	8.3 0.48	0.7	0.66	0.75	0.79	0.79	8.1 0.81
Odor	TON	3	S	2	0.48	0.7	ND	0.75	1	2	ND
Specific Conductance	umho/cm	1600		420	410	450	450	500	500	530	520
Turbidity	NTU	5	S	0.13	0.21	0.15	0.16	0.2	0.42	0.44	0.26
Metals		5	5	0.125	0.21	0.12	0.10	0.2	0112	0	0.20
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	ND	ND	16	16
Barium, Total	ug/l	1000	Р	8.8	7.6	11	26	68	62	160	160
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.042	0.03	0.021	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	0.064	ND
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	50		1.7	3.4	3	3.1	8.4	10	6.1	7
Manganese, Total	ug/l	50	S	8.9	7.4	16 ND	21	49 ND	46	76	62 ND
Mercury Nickel, Total	ug/l	2 100	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total	ug/l ug/l	50	P P	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	r S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/1	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	-8-		_								
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200		ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Ethyl Tort Dutyl Ethyl	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freen 11	ug/l	150	P			ND	ND ND		ND ND		
Freon 113 Methylene Chloride	ug/l	1200 5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l ug/l	5	P	ND	ND	ND	ND	ND	ND ND	ND	ND ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100		ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/1	150	Р	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/1	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/1	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND
Others			1								
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			1.5	1.4	0.86	0.88	0.56	0.59	ND	0.34

Page 7 of 34

Constituents			ype			Comp	oton #2		
Constituents	Units	MCL	MCL Type	Zone 1 4/24/2020	Zone 2 4/24/2020	Zone 3 4/24/2020	Zone 4 4/24/2020	Zone 5 4/24/2020	Zone 6 4/24/2020
General Minerals	- ⁻	~	~	7/27/2020	7/24/2020	7/24/2020	7/29/2020	7/27/2020	4/24/2020
Alkalinity	mg/l			480	280	160	180	190	190
Anion Sum	meq/l			10	6	4.9	6.3	6.5	8.1
Bicarbonate as HCO3	mg/l	1	27	580 0.65	340	200 0.099	220	230	230
Boron Bromide	mg/l ug/l	1	Ν	200	0.17 95	100	0.11 130	0.12	0.16 280
Calcium, Total	mg/l			12	26	45	68	67	81
Carbon Dioxide	mg/l			3	2.8	ND	2.3	ND	3.8
Carbonate as CO3	mg/l			12	4.4	2.6	2.3	3	ND
Cation Sum	meq/l			9	5.7	4.8	6.2	6.4	7.8
Chloride	mg/l	500		15	13	19	30	34	66
Fluoride	mg/l	2	Р	0.41 ND	0.27 ND	0.22 ND	0.23 ND	0.31 ND	0.38 ND
Hydroxide as OH, Calculated	mg/l ug/l			64	22	26	29	29	1.6
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	4.1
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	0.92
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			2.6	3.9	2.1	2.2	3.6	3.7
Sodium, Total	mg/l			190	89	45	41	42	50
Sulfate	mg/l	500	S	0.55	ND	54	83	84	110
Total Dissolved Solid (TDS) Total Nitrogen, Nitrate+Nitrite	mg/l	1000	S P	530 ND	330 ND	270 ND	360 ND	370 ND	460 0.92
General Physical Properties	mg/l	10	P	ND	ND	IND	ND	IND	0.92
Apparent Color	ACU	15	S	70	20	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			38	85	140	220	220	280
Lab pH	Units			8.5	8.3	8.3	8.2	8.3	8
angelier Index - 25 degree	None			0.92	0.85	0.8	0.99	1	0.86
Odor	TON	3	S	2	ND	ND	ND	ND	ND
Specific Conductance	amho/en	1600		900	560	460	600	620	780
Furbidity Matala	NTU	5	S	0.34	0.24	0.11	0.36	0.92	0.46
Metals Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/1 ug/1	6	P	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/1	10	P	1.2	ND	ND	ND	1	4.2
Barium, Total	ug/l	1000		13	19	31	38	98	84
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	1200		0.082	0.042	0.021	ND	ND	0.5
Copper, Total ron, Total	ug/l mg/l	1300 0.3	P S	ND 0.045	ND 0.041	ND ND	ND 0.034	ND 0.027	ND ND
Lead, Total	ug/1	15	P	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	15	1	2	4.9	6.4	11	14	18
Manganese, Total	ug/l	50	S	12	32	27	46	110	22
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	Р	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	5.8
Silver, Total	ug/l	100	S	ND	ND ND	ND	ND	ND ND	ND ND
Fhallium, Total Zinc, Total	ug/l ug/l	2 5000	P S	ND ND	ND	ND ND	ND ND	ND	ND
Volatile Organic Compounds	ug/1	5000	3	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND
,1-Dichloroethylene	ug/1	6	P	ND	ND	ND	ND	ND	ND
,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND ND
Chloromethane (Methyl Chloride) is-1,2-Dichloroethylene	ug/l ug/l	6	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	0	r	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/1 ug/1	300	Р	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND
reon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND
Aethylene Chloride	ug/l	5	Р	ND	ND	ND	ND	ND	ND
ATBE	ug/l	13 100	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
tyrene Yert Amyl Methyl Ether	ug/l ug/l	100	Р	ND	ND	ND	ND	ND ND	ND
Tetrachloroethylene (PCE)	ug/1 ug/1	5	Р	ND	ND	ND	ND	ND	ND
Toluene	ug/1	150		ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/1	80	P	ND	ND	ND	ND	ND	ND
rans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND
/inyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Kylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others						ND	ND	ND	ND
,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND
Perchlorate Surfactants	ug/l	6 0.5	P S	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fotal Organic Carbon	mg/l mg/l	0.5	5	14	3	0.54	ND	ND	ND

Page 8 of 34

			/pe						Dowr	ney #1					
Constituents	Units	MCL	MCL Type	Zor 5/11/2020	ne 1 9/22/2020	Zor 5/11/2020	ne 2 9/22/2020	Zor 5/11/2020	ne 3 9/22/2020	Zor 5/11/2020	ne 4 9/22/2020	Zor 5/11/2020	ne 5 9/22/2020	Zor 5/11/2020	ne 6 9/22/2020
General Minerals	-	4	2	3/11/2020	9/22/2020	3/11/2020	9/22/2020	5/11/2020	9/22/2020	3/11/2020	9/22/2020	3/11/2020	9/22/2020	5/11/2020	9/22/2020
Alkalinity	mg/l			150	150	150	150	180	180	190	190	220	210	400	380
Anion Sum	meq/l			3.6	3.6	6	6.2	8.1	8.3	8.9	9.1	8	7.6	17	17
Bicarbonate as HCO3	mg/l	1		190	180	190	180	220	220	230	230	260	260	480	470
Boron Bromide	mg/l ug/l	1	N	0.053	ND 19	0.057 79	0.052	0.1 140	0.1 140	0.18 180	0.18	0.084	0.078	0.24 420	0.23 490
Calcium, Total	mg/l			40	41	75	78	96	140	92	94	100	95	190	190
Carbon Dioxide	mg/l			2.5	3	3.1	3	4.5	3.6	7.5	7.5	6.8	6.8	16	15
Carbonate as CO3	mg/l			ND	ND										
Cation Sum	meq/l			3.6	3.7	5.8	6.1	7.8	8.2	8.5	8.8	7.8	7.6	17	17
Chloride Fluoride	mg/l	500	S P	4.8 0.32	5 0.32	34 0.3	39 0.29	71 0.34	74 0.32	79 0.39	83 0.37	48 0.39	44 0.38	110 0.33	110 0.31
Hydroxide as OH, Calculated	mg/l mg/l	2	Р	ND	0.32 ND	ND	0.29 ND	0.34 ND	0.32 ND	0.39 ND	ND	0.39 ND	0.38 ND	0.33 ND	ND
Iodide	ug/l			ND	ND	ND	ND	ND	ND	4.2	4.9	6.9	7.6	5.1	5.4
Nitrate (as NO3)	mg/l	45	Р	ND	ND	8.8	9.3	15	16	7.7	8	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	2	2.1	3.5	3.6	1.7	1.8	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 2.7	ND	ND
Potassium, Total Sodium, Total	mg/l mg/l			2.4 25	2.7 25	3.1 25	3.4 26	3.2 35	3.7 37	4 54	4.4 56	3.6 28	3.7 28	6.3 95	6.8 97
Sulfate	mg/l	500	S	17	18	85	90	110	110	130	140	110	99	300	300
Total Dissolved Solid (TDS)	mg/l	1000	S	190	200	350	370	460	460	530	520	480	430	1100	1000
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	2	2.1	3.5	3.6	1.7	1.8	ND	ND	ND	ND
General Physical Properties															
Apparent Color	ACU ma/l	15	S	ND	ND 120	ND 240	ND 240	ND 210	ND 220	ND 200	ND 210	ND 220	ND 210	ND 620	ND 620
Hardness (Total, as CaCO3) Lab pH	mg/l Units	<u> </u>	-	120 8.1	120	240 8	240 8	310 7.9	320 8	300 7.7	310	320 7.8	310 7.8	630 7.7	630 7.7
Lab pH Langelier Index - 25 degree	None			0.51	0.45	0.67	0.7	0.77	8 0.86	0.57	0.61	0.77	0.76	1.2	1.2
Odor	TON	3	S	1	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Specific Conductance	umho/cm	1600	S	350	330	600	580	800	750	860	860	760	700	1600	1500
Turbidity	NTU	5	S	ND	ND	0.14	0.19	0.11	0.15	0.12	0.18	1.3	0.93	0.51	0.61
Metals	/1	1000		ND	ND										
Aluminum, Total Antimony, Total	ug/l ug/l	1000 6	P P	ND ND	ND ND										
Arsenic, Total	ug/1 ug/1	10	P	2.9	3	2.4	2.4	2.8	2.7	1.8	1.8	4.2	3.8	2.6	2.6
Barium, Total	ug/l	1000	Р	98	100	160	170	120	130	85	86	240	240	77	76
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND 2.7	ND	ND	ND								
Chromium, Total	ug/l	50	Р	3.7	3.7 3.9	1.7	1.8	1	ND 1.1	ND 0.36	ND 0.34	ND 0.025	ND ND	ND 0.026	ND ND
Hexavalent Chromium (Cr VI) Copper, Total	ug/l ug/l	1300	Р	4 ND	3.9 ND	2 ND	ND	ND	ND	0.30 ND	0.34 ND	0.023 ND	ND	0.020 ND	ND
Iron, Total	mg/l	0.3	S	ND	ND										
Lead, Total	ug/l	15	Р	ND	ND										
Magnesium, Total	None			5.5	5.7	12	12	17	18	18	19	18	18	37	37
Manganese, Total	ug/l	50	S	ND	ND	ND	ND	ND	ND	ND	ND	120	100	120	120
Mercury Nickel, Total	ug/l ug/l	2 100	P P	ND ND	ND ND										
Selenium, Total	ug/l	50	P	ND	ND										
Silver, Total	ug/1 ug/1	100	S	ND	ND										
Thallium, Total	ug/l	2	Р	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND										
Volatile Organic Compounds	/1	_		ND	ND										
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	5	P P	ND ND	ND ND										
1,2-Dichloroethane	ug/l	0.5	P	ND	ND										
Benzene	ug/l	1	P	ND	ND										
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND										
Chlorobenzene	ug/l	70	Р	ND	ND										
Chloromethane (Methyl Chloride)	ug/l	6	P	ND	ND										
cis-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l ug/l	6	Р	ND ND	ND ND										
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l			ND	ND										
Freon 11	ug/l	150	Р	ND	ND										
Freon 113	ug/l	1200		ND	ND										
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND
MTBE Styrene	ug/l ug/l	13 100	P P	ND ND	ND ND										
Tert Amyl Methyl Ether	ug/l	100	·	ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND										
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	Р	ND	ND										
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l	10	P	ND ND	ND ND										
Vinyl chloride (VC)	ug/l ug/l	5 0.5	P P	ND ND	ND ND										
Xylenes (Total)	ug/l	1750		ND	ND										
Others	<i>a</i> .		È		-	-		-		-				-	-
1,4-Dioxane	ug/l	1	Ν	ND	ND	5	5.1	8.7	8.4	3.1	3	1.2	1.2	1.4	1.4
Perchlorate	ug/l	6	Р	ND	ND	3.1	2.5	1.7	1.5	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND 0.25	ND	ND	ND	ND 0.22	ND 0.44	ND 0.5	ND 0.22	ND	ND 0.84	ND
Total Organic Carbon	mg/l	I		ND	0.25	ND	0.27	ND	0.32	0.44	0.5	0.33	0.36	0.84	0.88

Page 9 of 34

Constituents			lype				Huntingto				
Constituents	Units	MCL	MCL Type	Zoi 3/30/2020	ne 1 8/31/2020	Zor 3/30/2020	ne 2 8/31/2020	Zor 3/30/2020	ne 3 8/31/2020	Zor 3/30/2020	ne 4 8/31/2020
General Minerals											
Alkalinity	mg/l			180	180	190	190	250	250	380	370
Anion Sum	meq/l			6.1	6	6.8	6.8	11	11	14	14
Bicarbonate as HCO3	mg/l	1		220	220	230	230	300	300	460	450
Boron	mg/l	1	N	0.14 96	0.14 100	0.14 140	0.14 130	0.2 450	0.2 430	0.19 1400	0.19 1400
Bromide Calaium Tatal	ug/l			96 62	62	68	70	430	430	1400	1400
Calcium, Total Carbon Dioxide	mg/l			4.5	4.5	4.7	4.7	6.2	6.2	150	130
Carbonate as CO3	mg/l			4.3 ND	4.3 ND	4.7 ND	4.7 ND	0.2 ND	0.2 ND	ND	ND
Cation Sum	mg/l meq/l			6.1	6.2	6.7	6.9	11	11	14	14
Chloride	mg/l	500	S	22	22	33	33	94	92	86	82
Fluoride	mg/l	2	P	0.5	0.47	0.42	0.4	0.35	0.33	0.35	0.33
Hydroxide as OH, Calculated	mg/l	2	1	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			38	50	ND	ND	37	44	15	16
Nitrate (as NO3)	mg/l	45	Р	ND	ND	4.6	5.1	2.7	2.4	25	24
Nitrate as Nitrogen	mg/l	10	P	ND	ND	1	1.2	0.61	0.55	5.7	5.3
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l	-	-	3.1	3.2	3.3	3.5	4.2	4.4	5.2	5.4
Sodium, Total	mg/l			39	40	42	44	58	60	62	64
Sulfate	mg/l	500	S	90	89	93	92	180	170	170	160
Total Dissolved Solid (TDS)	mg/l	1000		360	370	400	410	710	680	800	810
Total Nitrogen, Nitrate+Nitrite	mg/l	10	P	ND	ND	1	1.2	0.61	0.55	5.7	5.3
General Physical Properties	0										
Apparent Color	ACU	15	S	5	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			220	220	240	240	410	410	540	540
Lab pH	Units			7.9	7.9	7.9	7.9	7.9	7.9	7.7	7.8
Langelier Index - 25 degree	None			0.58	0.56	0.68	0.7	1	1	1.1	1.1
Odor	TON	3	S	1	ND	1	ND	2	3	1	2
Specific Conductance	umho/cm	1600	S	590	550	630	620	1000	1000	1200	1200
Turbidity	NTU	5	S	1.2	1.8	0.19	0.18	0.3	0.21	0.19	0.15
Metals											
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Barium, Total	ug/l	1000	Р	68	67	86	94	100	110	98	99
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	2	ND
Hexavalent Chromium (Cr VI)	ug/l			0.032	ND	0.85	0.74	0.2	0.11	2	2.4
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	2
Iron, Total	mg/l	0.3	S	0.28	0.28	ND	ND	ND	ND	ND	ND
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None			15	15	16	17	28	28	39	39
Manganese, Total	ug/l	50	S	47	45	ND	ND	6.9	6.9	5	5.7
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	Р	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	5.4	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds											
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	1.1	1.2	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	7	7.3	34	24
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5		ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	—		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	1.2	1.3	ND	ND
Di-Isopropyl Ether	ug/l	200		ND	ND	ND	ND	ND	ND	120 ND	94 ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	1.50		ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150		ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	Р	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	E	2	ND	ND	ND	ND	ND	ND	ND 0.71	ND 0.68
Tetrachloroethylene (PCE)	ug/l	5	P	ND	ND	ND	ND	0.9	1	0.71	0.68
Toluene Total Tribalamethones	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND 4.2
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	24	22 ND	3.9	4.2
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	0.31	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND
Others		L .				N/D			N.S.	100	100
1,4-Dioxane	ug/l	I	N	ND	ND	ND	ND	ND	ND	ND 4.7	ND 4.0
Perchlorate	ug/l	6	P	ND	ND	ND	ND	1.6	1.6	4.7	4.9
Surfactants	mg/l	0.5	S	ND	ND 0.21	ND	ND 0.27	1.1	1.7	ND 0.71	ND 0.75
Total Organic Carbon	mg/l	I	I	ND	0.31	ND	0.37	6	5.6	0.71	0.75

Page 10 of 34

general Macrobia Case 1 Case 1 <thcase 1<="" th=""> <t< th=""><th>Constituents</th><th></th><th></th><th>ype</th><th></th><th></th><th>Lakev</th><th>vood #1</th><th></th><th></th></t<></thcase>	Constituents			ype			Lakev	vood #1		
General MonethyNo.No.No.No.No.Searborne MCMmpl111<	Constituents	Units	MCL	ACL T						Zone 6 4/22/2020
Attice Same meg1 meg1 1 2.3 3.5 3.7 4.4 4.2 Back meg1 1 N	General Minerals	-	R.	~	7/22/2020	7/22/2020	4/22/2020	7/22/2020	7/22/2020	7/22/2020
Sicholane HCOS ng2 1 N ND 0.00 0.00 0.004 0.070 Catals ng2 1 N ND 0.00 </td <td>Alkalinity</td> <td>mg/l</td> <td></td> <td></td> <td>96</td> <td>150</td> <td></td> <td></td> <td></td> <td>180</td>	Alkalinity	mg/l			96	150				180
Store neg1 1 N ND 0.06 0.064 0.0677 Sabani, Cad neg1 1 10 258 454 120 77 Sabani, Cad neg1 1 100 258 454 120 451 Sabani, Cad neg1 1 1 100 25 100 46 451 122 12 Sabani, Samai, Sabani, Sab										9.2
Normic org/1 N 110 28 44 130 57 Schwin Tool ng 1 N <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>220</td></td<>			1							220
zákus, Fual mgl l 9.9 36 39 9.4 4.6 4.6 zákonz kOS mgl l ND ND<		÷	1	N						0.079 950
Carbon Accord mpl ND		Č.		+						120
Extrong ac 0.31 mg1 N 3.9 2.9 2.5 2.7 2.1 Linking mg1 50 1 3.0 6.4 3.0 4.3 4.3 4.3 4.3 Linking mg1 50 1 3.0 6.4 8.0 7.0 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.6</td></td<>										3.6
Caton Samo month month 2 2 3.4 3.7 4.4.3 4.2 1 Florido mail 2 0 0.45 0.35 0.31 0.32 0.44 Florido mail mail 0.38 0.31 0.33 0.44 Florido mail 1 P 0.45 0.38 0.31 0.33 0.44 System mail 1 P 0.45 0.80 0.70 <td< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></td<>		÷								ND
Shork mpl S00 S0 Z0 P Out25 P Description Handback mpl Z0 P Out25 Out25 <t< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.7</td></t<>		÷								8.7
hydroxis of M, Cabulard mp1 ND ND ND ND ND ND Stada K, ON) mp1 45 F ND		*	500	S	20			22	12	160
obdeug1v489,31.83.11.91.0Ninzi a Ningamg1101NDNDNDNDNDNDNDNinzi a Ningamg11011NDNDNDNDNDNDNDNinzi a Ningamg1111NDNDNDNDNDNDNDNDSolan. Tolalmg11005100100100ND <td>Fluoride</td> <td>mg/l</td> <td>2</td> <td>Р</td> <td>0.45</td> <td>0.26</td> <td>0.31</td> <td>0.32</td> <td>0.48</td> <td>0.2</td>	Fluoride	mg/l	2	Р	0.45	0.26	0.31	0.32	0.48	0.2
Ninte a NNogen mg1 45 r ND ND ND ND ND ND ND Ninte a NNogen mg1 1 7 ND N	Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Nine as Ningen mg1 10 N ND ND ND ND ND ND Gaussim, fold mg1 1 r ND		ug/l								98
Nithe, a Ningan mg1 1 P ND		÷								ND
Votasian, Total mgl mgl ND 1.7 1.9 3.8 2.2 safare mgl 50 30 31 34 24 safare mgl 50 30 31 34 24 call bioloved Sold(TDS) mgl 100 8 77 17 14 13 14 call bioloved Sold(TDS) mgl 10 ND ND ND ND ND call bioloved Sold(TDS) mgl 11 1 0 ND ND ND dament Cotal, a CaCO3 mgl 1 2 0 ND ND ND ND dament Cotal, a CaCO3 mgl 1		÷								ND
Sobus, Total mgl mgl Sobus, Total M1 M4 P3 Stabine mgl 500 \$ 170 17 14 13 144 Stabines, Norma, M2 mgl 100 \$ 100 ND ND ND ND Serier Lings, Corona, M2 10 \$ 100 ND ND ND ND Serier Lings, Corona, M2 10 \$ 100 ND ND ND ND ND Serier Constant, State M2 ND 0.29 0.74 0.76 0.81 0.73 100 Serift Conduction MD ND		÷	1	Р						ND
withing mg1 50 5 -17 17 14 13 14 feal biseds disk disk mg1 100 s 160 190 200 240 230 feared Physical Phy		÷		-						4.1
Gal Disolad Solid (TDS) mgl 100 s 160 1700 ND ND <t< td=""><td></td><td>~</td><td>500</td><td>c</td><td></td><td></td><td></td><td></td><td></td><td>42 43</td></t<>		~	500	c						42 43
Total Nigren, Nitrate-Nigrin, mg1 10 ND ND ND ND ND Apparent Color ACU 15 1 0 ND ND ND ND Apparent Color ACG 15 2 100 ND ND ND ND adjeff 0.05 2 0.77 8.4 8.3 8.3 8.2 adjeff 0.05 0.23 0.74 0.76 0.61 0.73 specific conductance mbox 1000 S 2.280 3.30 3.40 4.20 4.00 Verbidy NTU 5 8 0.33 0.76 0.64 1.3 0.32 Verbidy NTU 5 8 0.33 0.76 0.64 1.3 0.32 Verbidy NTD ND ND ND ND ND ND Verbidy 10 P 14 17 1.5 7.8 3.2 Ver		<u> </u>								43 650
icera Physical Properties ice ice <td></td> <td>÷</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		÷								ND
Apparent Color ACU 15 N ND ND ND ND ab pli Units 2 26 100 120 140 150 ab pli Units 8 7 8.4 8.3 8.3 8.2 angler Index - 25 degre Noe 1 0.29 0.44 0.76 0.81 0.73 Specific Conductance mbox 1600 5 2.80 3.30 3.40 4.20 4.00 Unitsking NTU 5 6 0.30 0.76 0.64 1.3 0.32 Versitio ND ND ND ND ND ND ND Versitio 1.01 1.01 1.14 1.7 1.7.5 7.8 3.2 Sarrum, Total u.g1 0.01 ND ND ND ND ND Sarrum, Total u.g1 5.0 P NDD ND ND ND ND Sarprulim, Total		ing/1	10	r	110	110	nD	110	110	nD
fachness (CaO.3) mg/l i 260 100 120 140 150 angler Index - 25 degres Nore i 0.29 0.74 0.76 0.81 0.73 Jobar TON 3 S 1 1 1 1 1 1 Open Conductance mb/cv1 [600] S 280 330 340 420 400 Unidaty NTU S S 0.33 0.76 0.64 1.3 0.32 Unidaty NTU S S 0.33 0.76 0.64 1.3 0.32 Wainsoy, Total ug1 0 P ND		ACU	15	S	10	ND	ND	ND	ND	3
ab pit Units No No No State 8.4 8.3 8.3 8.2 P Abor TON 3 8 1 0.03 1 0.03 1 0.03 1 0.03 1										350
angeler Index - 25 degree Nore I 0.29 0.74 0.76 0.81 0.73 1 Sport TON 3 5 1 <td< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td></td<>			1							8
Nor TON 3 r 1										0.97
Tarbidary NTU S 8 0.33 0.76 0.64 1.3 0.32 Vaniany, Total ug1 100 P ND ND ND ND ND Vaniany, Total ug1 6 P ND ND ND ND ND Straim, Total ug1 61 P ND ND ND ND ND Straim, Total ug1 6 P ND ND ND ND ND Saftman, Total ug1 5 R ND ND ND ND ND Canina ng1 5 R ND ND ND ND ND ND Canina ug1 5 R ND ND ND ND ND ND Canina ug1 63 8 ND ND ND ND ND Canina ug1 5 R ND ND			3	S		1				1
Vertak Vertak<	Specific Conductance	umho/cm	1600	S			340	420		920
Numium, Total up[000 P ND ND ND ND ND Animony, Total up[10 P 14 17 1.5 7.8 3.2 Barum, Total up[100 P 16 2.7 3.3 180 120 Berylinun, Total up[4 P ND ND ND ND ND Gamum, Total up[5 P ND ND<		NTU	5	S	0.33	0.76	0.64	1.3	0.32	0.9
Antimory, Total ug1 6 P ND ND ND ND ND ND Arenie, Total ug1 100 P 14 17 1.5 7.8 3.2 I Barium, Total ug1 4 P ND ND ND ND ND Cadmium, Total ug1 5 P ND ND ND ND ND ND Compoint, Total ug1 5 P ND	Metals									
Nrenic, Total ug1 100 p 14 17 1.5 7.8 3.2 bits Serujin, Total ug1 100 p 16 27 33 180 120 ND Serujin, Total ug1 5 p ND ND ND ND ND Samuar, Total ug1 50 p ND				_						ND
Sarum, Total ug1 1000 p 16 27 33 180 120 Sadmium, Total ug1 5 p ND ND ND ND ND ND Sadmium, Total ug1 50 p ND ND ND ND ND Tornutin, Total ug1 100 p ND ND ND ND ND Tornutin, Total ug1 100 P ND										ND
JergHum, Total ugl 4 P ND										28
Sadmium, Total ugl 5 P ND ND ND ND ND ND ND Texavaler Chronium (Cr VI) ugl 130 P ND ND ND ND ND ND ND Sopper, Total ugl 130 P ND <										360
Thomium, Total ug1 50 P ND ND ND ND ND ND ND Servayaent Chronium (Gr VI) ug1 1300 P ND ND <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		U								ND
Ideaxalent Chromium (Cr VI) ug/l Idoa 0.063 0.021 0.022 0.026 ND ND copper, Total mg/l 0.3 s ND										ND
Coper, Total ug1 1300 P ND		0	50	Р						ND
		Č.	1200							ND ND
cad, Total ug1 15 P ND ND ND ND ND ND Manganese, Total ug1 50 s 4.1 19 25 67 58 Marganese, Total ug1 2 P ND		÷								0.14
Magnesim, Total None 0.33 3.6 4.4 5.4 8.5 Manganese, Total ug1 50 S 4.1 19 2.5 67 58 Marganese, Total ug1 10 P ND										ND
Marganese, Total ug/l 50 s 4.1 19 25 67 58 Mercury ug/l 100 P ND N			15	1						12
Mercury ug1 2 P ND ND ND ND ND ND Skel, Total ug1 100 P ND			50	s						300
Nickel Total ug/l 100 P ND ND ND ND ND ND Selenium, Total ug/l 100 s ND		÷		_						ND
Selenium, Total ug/l 50 P ND ND ND ND ND ND Silver, Total ug/l 2 P ND ND <t< td=""><td>Nickel, Total</td><td>Č.</td><td>100</td><td>Р</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Nickel, Total	Č.	100	Р	ND	ND	ND	ND	ND	ND
Thallum, Totalug/l2PNDNDNDNDNDNDNDZinc, Totalug/l5000sNDNDNDNDNDNDNDNDLin-Dichlorochaneug/l5PNDNDNDNDNDNDNDND1,1-Dichlorochylencug/l6PNDNDNDNDNDNDND1,2-Dichlorochylencug/l17PNDNDNDNDNDNDRenzeneug/l10.5PNDNDNDNDNDNDNDBenzeneug/l70PNDNDNDNDNDNDNDChlorochzaneug/l70PNDNDNDNDNDNDNDNDChlorochyleneug/l6PNDNDNDNDNDNDNDNDNDChlorochyleneug/l16PND	Selenium, Total		50	Р	ND	ND	ND	ND	ND	ND
Zinc, Totalug/l5000sNDNDNDNDNDNDVolatile Organic Compoundsug/l5PNDNDNDNDNDND1,1-Dichlorocethaneug/l6PNDNDNDNDNDND1,1-Dichlorocethaneug/l0.5PNDNDNDNDNDND1,2-Dichlorocethaneug/l0.5PNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDChlorobenzeneug/l0.5PNDNDNDNDNDNDChlorobenzeneug/l10PNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDChlorobenzeneug/l <t< td=""><td></td><td>ug/l</td><td>100</td><td>S</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td></t<>		ug/l	100	S	ND		ND	ND		ND
Volatile Organic Compounds 0 0 0 ND										ND
I,1-Dichloroethaneug/l5PNDNDNDNDNDND,1-Dichloroethyleneug/l0.5PNDNDNDNDNDNDND2-Dichloroethaneug/l0.5PNDNDNDNDNDNDND2arbon Tetrachlorideug/l1PNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDChorobenzeneug/l70PNDNDNDNDNDNDNDChorobenzeneug/l6PNDNDNDNDNDNDNDChisorophyleneug/l6PNDNDNDNDNDNDNDChisorophyleneug/l16PNDNDNDNDNDNDNDChisorophyleneug/l150PNDNDNDNDNDNDNDCreon 11ug/l150PNDNDNDNDNDNDNDCreon 113ug/l130PNDNDNDNDNDNDNDGreat null delta chistorideug/l13PNDNDNDNDNDNDGreat null delta chistorideug/l16<		ug/l	5000	S	ND	ND	ND	ND	ND	ND
1-bickloroethyleneug/l6PNDNDNDNDNDNDND1,2-bickloroethaneug/l0.5PNDNDNDNDNDNDNDCarbon Tetrachlorideug/l1.6PNDNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDChorobenzeneug/l0.5PNDNDNDNDNDNDNDChorobenzeneug/l6PNDNDNDNDNDNDNDChorobenzeneug/l6PNDNDNDNDNDNDNDChorobenzeneug/l6PNDNDNDNDNDNDNDCisl-12-Dichloroethyleneug/l6PNDNDNDNDNDNDCisl-12-Dichloroethyleneug/l6PNDNDNDNDNDNDCisl-12-Dichloroethyleneug/l6PNDNDNDNDNDNDCisl-12-Dichloroethyleneug/l100PNDNDNDNDNDNDCisl-12-Dichloroethyleneug/l1300PNDNDNDNDNDNDCisl-12-Dichloroethyleneug/l1300PNDNDNDNDNDCisl-12-Dichloroethylene<	8 1									
2-Dichloroethaneugl0.5PNDNDNDNDNDNDND $2enzeneugl1PNDNDNDNDNDNDNDND2arbon Tetrachlorideugl0.5PNDNDNDNDNDNDNDND2arbon Tetrachlorideugl0.5PNDNDNDNDNDNDND2hlorobenzeneugl70PNDNDNDNDNDNDND2hlorobethyleneugl0PNDNDNDNDNDNDND2hlopotethyleneugl0PNDNDNDNDNDNDND2hlopotethyleneugl300PNDNDNDNDNDNDND2hlylenzeneugl100PNDNDNDNDNDNDND2hront11ugl1200PNDN$, ,	Č.								ND
Banzeneug/l1PNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDChlorobenzeneug/l10PNDNDNDNDNDNDNDNDChloroberzeneug/l6PNDNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l6PNDNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l6PNDNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l6PND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>										ND
Carbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDNDChlorobenzeneug/l70PND<		Č.	0.5							ND
Chlorobenzeneug/l70PNDNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l6PND		49/I	1	•						ND ND
Chloromethane (Methyl Chloride)ug/lug/llND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>										ND
is-1,2-Dichloroethyleneug/l6PNDNDNDNDNDNDND Di -Isopropyl Etherug/lug/lNDNDNDNDNDNDNDND Di -Isopropyl Etherug/l0PNDNDNDNDNDNDNDND $Ethyl Perterug/l0PNDNDNDNDNDNDNDNDEthyl Tert Butyl Etheug/l150PNDNDNDNDNDNDNDNDercon 11ug/l1200PNDNDNDNDNDNDNDNDercon 11ug/l1200PNDNDNDNDNDNDNDercon 11ug/l1200PNDNDNDNDNDNDNDertor 113ug/l1200PNDNDNDNDNDNDNDdethylene Chlorideug/l13PNDNDNDNDNDNDNDdethylene Chlorideug/l100PNDNDNDNDNDNDNDNDerta Anyl Methyl Etheiug/l100PND$			70	r						ND
Di-Isopropyl Etherug/lug/lNDNDNDNDNDNDithyl Dert Butyl Etherug/l300PNDNDNDNDNDNDNDithyl Tert Butyl Etherug/l100PNDNDNDNDNDNDNDrecon 11ug/l1200PNDNDNDNDNDNDNDrecon 113ug/l1200PNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDityreneug/l100PNDNDNDNDNDNDetra Amyl Methyl Etherug/l100PNDNDNDNDNDNDifold nemeug/l150PNDNDNDNDNDNDNDifold renkhamesug/l160PNDNDNDNDNDNDNDifold renkhamesug/l150PNDNDNDNDNDNDNDNDifold renkhameug/l5PNDNDNDNDNDNDNDNDNDifold renkhameug/l150PNDNDNDNDNDNDNDNDNDNDNDNDND			6	р						ND
Ethylbenzeneug/l300PNDNDNDNDNDNDithyl Tert Butyl Etheug/l ug/l NDNDNDNDNDNDNDreon 11ug/l150PNDNDNDNDNDNDNDNDreon 113ug/l1200PNDNDNDNDNDNDNDferen 113ug/l1200PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDfert Amyl Methyl Etheiug/l100PNDNDNDNDNDNDNDNDNDfert Amyl Methyl Etheiug/l5PND<			5	Ľ.						ND
ithyl Tert Butyl Ethenug/lINDNDNDNDNDNDreon 11ug/l150PNDNDNDNDNDNDNDreon 113ug/l1200PNDNDNDNDNDNDNDdethylene Chlorideug/l5PNDNDNDNDNDNDdtTBEug/l13PNDNDNDNDNDNDfert Amyl Methyl Ethenug/l100PNDNDNDNDNDNDfert Amyl Methyl Ethenug/l5PNDNDNDNDNDNDfolueneug/l150PNDNDNDNDNDNDNDfolueneug/l150PNDNDNDNDNDNDNDfolueneug/l150PNDNDNDNDNDNDNDfolueneug/l150PNDNDNDNDNDNDNDfolueneug/l10PNDNDNDNDNDNDNDfolueneug/l10PNDNDNDNDNDNDNDfolueneug/l10PNDNDNDNDNDNDNDfolueneug/l10PNDNDNDNDNDNDNDND<			300	Р						ND
reon 11 ug/l 150 P ND				Ė						ND
reon 113ug/l1200PNDNDNDNDNDND $dethylene Chlorideug/l5PNDNDNDNDNDNDdTBEug/l13PNDNDNDNDNDNDNDdTBEug/l13PNDNDNDNDNDNDNDetratholiceug/l130PNDNDNDNDNDNDetratholiceug/l100PNDNDNDNDNDNDetratholiceug/l5PNDNDNDNDNDNDetratholiceug/l150PNDNDNDNDNDNDNDetratholiceug/l150PNDNDNDNDNDNDNDetratholiceug/l150PNDNDNDNDNDNDNDetratholiceug/l150PNDNDNDNDNDNDNDetratholiceug/l100PNDNDNDNDNDNDNDetratholiceug/l100PNDNDNDNDNDNDNDetratholiceug/l100PNDNDNDNDNDNDNDetratholiceug/l100PNDNDNDNDND$			150	Р						ND
Acthylene Chlorideug/l5PNDNDNDNDNDND $dTBE$ ug/l13PNDNDNDNDNDNDNDityreneug/l13PNDNDNDNDNDNDNDityreneug/l100PNDNDNDNDNDNDNDcert Amyl Methyl Etherug/l5PNDNDNDNDNDNDcert Amyl Methyl Etherug/l5PNDNDNDNDNDNDcert Amyl Methyl Etherug/l150PNDNDNDNDNDNDcolueneug/l150PNDNDNDNDNDNDNDcolueneug/l160PNDNDNDNDNDNDNDcolarst-1.2-Dichloroethyleneug/l80PNDNDNDNDNDNDcolarst-1.2-Dichloroethyleneug/l5PNDNDNDNDNDNDcirlolorethylene (TCE)ug/l5PNDNDNDNDNDNDNDcirlolorethylene (Total)ug/l1750PND<										ND
ityreneug/l100PNDNDNDNDNDND'ert Amyl Methyl Etheiug/lVNDNDNDNDNDNDND'ert Amyl Methyl Etheiug/l5PNDNDNDNDNDNDND'ertachloroethylene (PCE)ug/l150PNDNDNDNDNDNDNDND'olueneug/l150PNDNDNDNDNDNDNDND'olatal Trihalomethanesug/l180PNDNDNDNDNDNDNDrans-1,2-Dichloroethyleneug/l10PNDNDNDNDNDNDNDND'rinyl chloride (VC)ug/l5PNDNDNDNDNDNDNDND'glenes (Total)ug/l1750PNDNDNDNDNDNDNDNDND'thers	Aethylene Chloride					ND				ND
ert Amyl Methyl Ethei ug/l I ND ND<			13	Р	ND	ND	ND	ND	ND	ND
'etrachloroethylene (PCE) ug/l 5 P ND		ug/l	100	Р						ND
oluene ug/l 150 P ND <										ND
Trihalomethanes ug/l 80 P ND		÷								ND
rans-1,2-Dichloroethylene ug/l 10 P ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></th<>										ND
Trichloroethylene (TČE) ug/l 5 P ND										ND
Vinyl chloride (VC) ug/l 0.5 P ND ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>										ND
kylenes (Total) ug/l 1750 P ND										ND
Dthers Image: Constraint of the state of th										ND
,4-Dioxane ug/l l N ND ND ND ND ND		ug/l	1750	Р	ND	ND	ND	ND	ND	ND
'erchiorate ug/1 6 P ND ND ND ND ND ND			1							ND
ĕ		ug/l	6							ND
Burfactants mg/l 0.5 s ND			0.5	S						0.13 0.78

Page 11 of 34

Constituents			ype							I	Jakew	ood #2	2						
Constituents	Units	MCL	MCL Type	Zor 4/29/2020	ne 1 9/15/2020	Zor 4/29/2020	ne 2 9/15/2020	Zo1 4/29/2020	ne 3 9/15/2020	Zor 4/29/2020	ne 4 9/15/2020	Zor 4/29/2020	ne 5 9/15/2020	Zor 4/29/2020	ne 6 9/15/2020	Zo: 4/29/2020	ne 7 9/15/2020	Zor 4/29/2020	ne 8 9/15/2020
General Minerals																			
Alkalinity	mg/l			100	100	140	130	130	130	180	180	170	170	180	180	180	180	210	200
Anion Sum	meq/l			3.4	3.4	3.1	3.1	3	3	4.8	4.8	4	3.9	4	4	4	4	4.5	4.4
Bicarbonate as HCO3	mg/l			130	120	160	160	160	160	220	220	210	210	220	220	220	210	250	250
Boron	mg/l	1	Ν	0.054	ND	ND	ND	ND	ND	0.065	0.06	0.054	ND	0.06	0.054	0.06	0.054	0.072	0.067
Bromide	ug/l			46	46	26	26	28	30	33	34	20	24	18	31	20	28	36	33
Calcium, Total	mg/l		\square	12	12	26 ND	27	26 ND	26	60	61	41 ND	43	47	48	53	53	55	57
Carbon Dioxide	mg/l		\square	ND 2.4	ND 2.1	ND	ND	ND	ND	2.3	2.9	ND 2.7	2.2	2.3	2.3	2.9	2.2	3.2	2.6
Carbonate as CO3 Cation Sum	mg/l		\square	3.4 3.2	3.1	2.6	2.6 3.2	2.6	2.6	2.3	ND 4.8	2.7 3.9	2.2	2.3 4.1	2.3	ND 4	2.2	2 4.4	2.6 4.6
Chloride	meq/l mg/l	500	S	12	13	5.2	5.5	3 5.4	5.6	4./	4.0	5.4	5.7	4.1	5.3	5.2	5.5	6.3	6.8
Fluoride	mg/l	2	P	0.42	0.42	0.33	0.32	0.28	0.28	0.42	0.41	0.27	0.28	0.33	0.32	0.23	0.23	0.35	0.35
Hydroxide as OH, Calculated	mg/l	2	1	ND	ND														
Iodide	ug/l		\vdash	19	20	11	12	14	16	ND	ND	6.9	7.7	5.9	8.4	8.8	11	27	29
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	0.95	1.1	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	0.22	0.24	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND														
Potassium, Total	mg/l			ND	ND	1.9	2	1.3	1.5	2.8	3	2.2	2.4	2.5	2.7	2.1	2.2	2.5	2.6
Sodium, Total	mg/l			61	63	34	35	33	35	21	22	32	32	25	26	24	24	24	25
Sulfate	mg/l	500	S	46	48	13	14	8.7	8.9	37	38	17	17	8.6	9.2	14	15	6.4	6.9
Total Dissolved Solid (TDS)	mg/l	1000	S	220	220	190	200	180	190	280	290	230	250	220	240	240	250	260	280
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	0.22	0.24	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties																			
Apparent Color	ACU	15	S	5	ND	ND	ND	5	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l		\Box	32	32	79	82	74	74	190	190	120	130	140	150	150	150	160	170
Lab pH	Units			8.6	8.6	8.4	8.4	8.4	8.4	8.2	8.1	8.3	8.2	8.2	8.2	8.1	8.2	8.1	8.2
Langelier Index - 25 degree	None		\square	0.34	0.3	0.56	0.55	0.59	0.58	0.87	0.8	0.77	0.67	0.76	0.8	0.75	0.8	0.77	0.89
Odor	TON	3	S	2	1	ND	ND	1	ND	2	ND 450	2	ND	2	ND	2	ND	2	ND
Specific Conductance	umho/en	1600		350	340	300	300	290	280	460	450	380	380	360	380	380	380	420	400
Turbidity	NTU	5	S	0.12	0.13	ND	ND	ND	0.12	ND	0.13	8.5	3.4	0.16	0.16	0.21	0.4	0.19	0.29
Metals	/1	1000		ND	ND	ND	ND	ND	NID	ND	ND	ND	ND	ND	NID	ND	NID	ND	ND
Aluminum, Total	ug/l	1000		ND	ND														
Antimony, Total	ug/l	6	Р	ND 14	ND 15	ND	ND	ND	ND	ND 2.0	ND 2(ND	ND	ND	ND	ND	ND 42	ND	ND
Arsenic, Total Barium, Total	ug/l	10 1000	P	14 15	15 16	ND 7.3	ND 8.2	1.4 9.4	1.7 10	2.9 110	3.6	22 120	23 120	7.4 72	9 68	40 140	43 130	41 120	44 120
Beryllium, Total	ug/l ug/l	4	P	ND	ND	7.3 ND	0.2 ND	9.4 ND	ND	ND	ND								
Cadmium, Total	ug/l	5	P	ND	ND														
Chromium, Total	ug/l	50	P	ND	ND														
Hexavalent Chromium (Cr VI)	ug/1 ug/1	50	1	0.044	0.032	0.021	ND	0.027	ND	0.48	0.49	0.02	ND	0.021	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	P	ND	ND														
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	ND	ND	ND	ND	0.037	0.036	0.056	0.055	0.074	0.076	0.068	0.069
Lead, Total	ug/l	15	Р	ND	ND														
Magnesium, Total	None			0.38	0.38	3.5	3.5	2.2	2.2	8.9	9.1	4.8	4.9	6.7	6.8	3.6	3.6	6.8	6.9
Manganese, Total	ug/l	50	S	4.4	5	13	14	15	17	ND	ND	92	98	160	170	100	110	190	200
Mercury	ug/l	2	Р	0.28	ND	ND	ND												
Nickel, Total	ug/l	100	Р	ND	ND														
Selenium, Total	ug/l	50	Р	ND	ND														
Silver, Total	ug/l	100	S	ND	ND														
Thallium, Total	ug/l	2	Р	ND	ND														
Zinc, Total	ug/l	5000	S	ND	ND														
Volatile Organic Compounds	11								ND						N/D				
1,1-Dichloroethane	ug/l	5	Р	ND	ND														
1,1-Dichloroethylene 1,2-Dichloroethane	ug/l	6 0.5	P	ND ND	ND ND														
I,2-Dichloroethane Benzene	ug/l ug/l	0.3	P P	ND ND	ND ND														
Carbon Tetrachloride	ug/l	0.5	P	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND
Chlorobenzene	ug/l	70	P	ND	ND														
Chloromethane (Methyl Chloride)	ug/l	,,,	ا ا	ND	ND														
cis-1.2-Dichloroethylene	ug/1 ug/1	6	Р	ND	ND														
Di-Isopropyl Ether	ug/l	۲Ť	ز ا	ND	ND														
Ethylbenzene	ug/1 ug/1	300	Р	ND	ND														
Ethyl Tert Butyl Ether	ug/l			ND	ND														
Freon 11	ug/l	150	Р	ND	ND														
Freon 113	ug/l	1200		ND	ND														
Methylene Chloride	ug/l	5	Р	ND	ND														
MTBE	ug/l	13	Р	ND	ND														
Styrene	ug/l	100	Р	ND	ND														
Tert Amyl Methyl Ether	ug/l			ND	ND														
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND														
Toluene	ug/l	150	Р	ND	ND														
Total Trihalomethanes	ug/l	80	Р	ND	ND														
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND														
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND														
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND														
Xylenes (Total)	ug/l	1750	Р	ND	ND														
Others	4	⊢,'	ĻJ					200							100				
1,4-Dioxane	ug/l	1	N	ND ND	ND	ND	ND												
Perchlorate		6	Р	ND.	ND	ND	ND												
	ug/l		-				NID	NID										NID	NID
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	ND 0.4	ND 0.63	ND 0.32	ND 0.49	ND 0.47	ND 0.68	ND ND	ND 0.25	ND ND	ND 0.44	ND 0.32	ND 0.51	ND ND	ND 0.5	ND 0.3	ND 0.45

Page 12 of 34

Constituents			ype					La Mir	ada #1				
	Units	MCL	MCL Type	Zor 3/24/2020	ne 1 9/28/2020	Zor 3/24/2020	ne 2 9/28/2020	Zor 3/24/2020	ne 3 9/28/2020	Zor 3/24/2020	ne 4 9/28/2020	Zo: 3/24/2020	ne 5 9/28/2020
General Minerals				150	150	140	1.40	100	100	200	200	200	100
Alkalinity Anion Sum	mg/l			150 5.9	150 5.9	4.2	4.2	190 5.5	180 5.5	200 8.1	200	200 17	190 15
Bicarbonate as HCO3	meq/l mg/l			180	180	4.2	4.2	230	210	240	240	240	230
Boron	mg/l	1	N	0.14	0.13	0.092	0.086	0.14	0.13	0.12	0.12	0.16	0.15
Bromide	ug/l			92	88	44	44	66	69	330	290	870	760
Calcium, Total	mg/l			18	15	9.5	9.6	24	20	60	55	130	110
Carbon Dioxide	mg/l			ND	ND	ND	ND	ND	ND	2.5	3.9	3.9	6
Carbonate as CO3	mg/l			2.9	2.9	3.5	2.8	3.8	2.7	2.5	ND	ND	ND
Cation Sum	meq/l			6.8	5.7	3.9	4.1	5.2	5.4	8	7.8	16	14
Chloride	mg/l	500	S	28	27	14	14	18	19	74	65	320	280
Fluoride	mg/l	2	Р	0.8	0.74	0.58	0.57	0.76	0.75	0.52	0.53	0.34	0.36
Hydroxide as OH, Calculated	mg/l			ND	ND								
Iodide	ug/l	45	D	28 ND	34 ND	7.7 ND	12 ND	23 ND	32 ND	37 2.5	49 1.8	2.5 89	5.4 76
Nitrate (as NO3) Nitrate as Nitrogen	mg/l	45 10	P P	ND	ND	ND	ND	ND	ND	0.57	0.4	20	17
Nitrite, as Nitrogen	mg/l mg/l	10	P	ND	ND								
Potassium, Total	mg/l	1	1	1.8	2	1.2	1.4	2.1	2.2	2.8	2.9	4.1	4.2
Sodium, Total	mg/l			120	100	75	80	76	89	73	78	130	110
Sulfate	mg/l	500	S	99	100	47	48	55	65	100	110	120	110
Total Dissolved Solid (TDS)	mg/l	1000	S	360	350	250	250	330	310	470	450	1100	890
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	0.57	0.4	20	17
General Physical Properties	6												
Apparent Color	ACU	15	S	ND	ND								
Hardness (Total, as CaCO3)	mg/l		L	68	53	29	30	91	75	240	220	510	440
Lab pH	Units			8.4	8.4	8.5	8.4	8.4	8.3	8.2	8	8	7.8
Langelier Index - 25 degree	None			0.48	0.35	0.23	0.19	0.65	0.44	0.89	0.66	1	0.79
Odor	TON	3	S	2	ND	1	ND	1	ND	1	ND	ND	ND
Specific Conductance	umho/en	1600	S	580	600	410	410	520	520	800	770	1600	1400
Turbidity	NTU	5	S	0.18	0.25	0.25	0.27	0.15	0.2	0.17	0.22	0.12	0.37
Metals													
Aluminum, Total	ug/l	1000	Р	ND	ND								
Antimony, Total	ug/l	6	Р	ND	ND								
Arsenic, Total	ug/l	10	Р	5.5	5.8	7.7	8.2	4.8	4.9	3.1	3.4	1.5	1.6
Barium, Total	ug/l	1000	Р	37 ND	44 ND	25 ND	26 ND	47 ND	39 ND	62 ND	59 ND	140 ND	120 ND
Beryllium, Total Cadmium, Total	ug/l	4	P P	ND	ND								
Chromium, Total	ug/l ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3
Hexavalent Chromium (Cr VI)	ug/l	30	Р	0.17	0.022	0.17	ND	0.18	ND	0.15	0.023	1.1	0.78
Copper, Total	ug/1 ug/1	1300	Р	ND	ND								
Iron, Total	mg/l	0.3	S	ND	ND								
Lead, Total	ug/l	15	P	ND	ND								
Magnesium, Total	None	10		5.6	3.7	1.3	1.4	7.6	6.1	21	20	45	40
Manganese, Total	ug/l	50	S	12	10	3.4	3.4	18	15	31	34	29	43
Mercury	ug/l	2	Р	ND	ND								
Nickel, Total	ug/l	100	Р	ND	ND								
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	9	6.2	12	9.8
Silver, Total	ug/l	100	S	ND	ND								
Thallium, Total	ug/l	2	Р	ND	ND								
Zinc, Total	ug/l	5000	S	ND	ND								
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND	ND								
1,1-Dichloroethylene	ug/l	6	Р	ND	ND								
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND								
Benzene Carbon Tetrachloride	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	r	ND	ND								
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND								
Di-Isopropyl Ether	ug/1 ug/1			ND	ND								
Ethylbenzene	ug/l	300	Р	ND	ND								
Ethyl Tert Butyl Ether	ug/1		·	ND	ND								
Freon 11	ug/l	150	Р	ND	ND								
Freon 113	ug/l	1200	Р	ND	ND								
Methylene Chloride	ug/l	5	Р	ND	ND								
MTBE	ug/l	13	Р	ND	ND								
Styrene	ug/l	100	Р	ND	ND								
Tert Amyl Methyl Ether	ug/l			ND	ND								
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND								
Toluene	ug/l	150	Р	ND	ND								
Total Trihalomethanes	ug/l	80	Р	ND	ND								
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND								
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND								
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND								
Xylenes (Total)	ug/l	1750	Р	ND	ND								
Others	nc /1	1		ND	ND								
1,4-Dioxane	ug/l	1	N	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 7.2	ND 6.6
Perchlorate Surfactants	ug/l mg/l	6 0.5	P S	ND ND	ND	ND	ND	ND	ND	ND ND	ND	0.12	6.6 ND
Total Organic Carbon	mg/l mg/l	0.5	5	ND	0.34	ND	0.31	0.42	0.39	ND	0.32	0.12	0.45
. San Organie Carbon	<u>g</u> /1	I			0.01		0.01	0.72	0.57	1.12	0.52	17.0	0.15

Page 13 of 34

			'pe						Long B	each #1					
Constituents	Units	MCL	MCL Type	Zor 5/7/2020	ne 1 8/27/2020	Zoi 5/7/2020	ne 2 8/27/2020	Zor 5/7/2020	ne 3 8/27/2020	Zor 5/7/2020	ne 4 8/27/2020	Zoi 5/7/2020	ne 5 8/27/2020	Zor 5/7/2020	ne 6 8/27/2020
General Minerals	-	F		51112020	0/2//2020	5/1/2020	0/2//2020	5/1/2020	0/2//2020	51112020	0/2//2020	51112020	0/2//2020	51112020	0/2//2020
Alkalinity	mg/l			160	160	150	150	120	120	130	130	130	130	260	250
Anion Sum	meq/l			3.8	3.7	3.5	3.5	3	3	3.8	3.6	12	12	17	17
Bicarbonate as HCO3 Boron	mg/l	1	N	190 0.17	190 0.18	180 0.16	180 0.16	140 0.08	140 0.085	160 0.055	160 0.069	160 0.14	160 0.15	310 0.11	310 0.12
Bromide	mg/l ug/l	1	IN	110	120	85	82	42	45	37	40	370	350	520	510
Calcium, Total	mg/l			4.9	3.4	2.4	2.4	5.1	5.5	22	21	52	53	180	190
Carbon Dioxide	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	6.4	6.4
Carbonate as CO3	mg/l			12	9.8	12	12	5.7	5.7	2.6	2.6	ND	ND	ND	ND
Cation Sum	meq/l	500		3.6	3.6	3.3	3.3	2.9	3	3.6	3.6	11	11	16	17
Chloride Fluoride	mg/l	500 2	S P	17 0.52	16 0.58	14 0.58	14 0.52	11 0.64	12 0.6	13 0.36	12 0.39	160 0.27	160 0.28	200 0.26	200 0.24
Hydroxide as OH, Calculated	mg/l mg/l	2	Р	ND	0.38 ND	0.38 ND	0.32 ND	0.04 ND	0.0 ND	0.30 ND	0.39 ND	ND	0.28 ND	ND	ND
Iodide	ug/l			32	37	22	21	9	8.3	6.2	7.6	14	12	66	54
Nitrate (as NO3)	mg/l	45	Р	ND	ND										
Nitrate as Nitrogen	mg/l	10	Р	ND	ND										
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND										
Potassium, Total	mg/l			ND	ND 70	ND	ND 72	ND	ND	ND	1	2.7	2.9	4.1	4.4
Sodium, Total Sulfate	mg/l	500	0	76	78 ND	74 ND	73 ND	61 14	62 14	52 37	56 32	180 230	170 230	100 310	100 310
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S S	220	230	210	210	14	14	220	220	690	700	1000	1000
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND										
General Physical Properties	8.	-		-	-	-	-	-		-					
Apparent Color	ACU	15	S	100	120	80	70	35	40	5	ND	3	ND	5	ND
Hardness (Total, as CaCO3)	mg/l			14	9.7	6.5	6.5	14	15	63	59	160	160	580	610
Lab pH	Units			9	8.9	9	9	8.8	8.8	8.4	8.4	8.2	8.1	7.9	7.9
Langelier Index - 25 degree Odor	None TON	2	-	0.5	0.3	0.23	0.16	0.21	0.23	0.47	0.44	0.67	0.6 ND	1.2	1.2 ND
Specific Conductance	umho/cm	3 1600	S	360	360	340	330	300	290	350	340	1200	1200	1600	1500
Turbidity	NTU	5	S	0.28	0.46	0.22	0.19	0.35	0.27	0.34	0.26	1.1	0.55	0.72	0.69
Metals		5		0.20	0.10	0.22	0.17	0.55	0.27	0151	0.20		0.00	0.72	0.07
Aluminum, Total	ug/l	1000	Р	29	30	26	25	ND	20	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	ND	ND	7.7	7.4								
Barium, Total	ug/l	1000	Р	3.5	2.8	2	2	ND	ND	8.4	8.5	45	53	180	190
Beryllium, Total Cadmium, Total	ug/l	4	P P	ND ND	ND ND										
Chromium, Total	ug/l ug/l	50	P	ND	ND										
Hexavalent Chromium (Cr VI)	ug/1 ug/1	50	r	0.29	0.11	0.3	0.091	0.33	0.082	0.16	0.02	0.18	ND	0.11	ND
Copper, Total	ug/l	1300	Р	ND	ND										
Iron, Total	mg/l	0.3	S	0.026	0.026	ND	ND	ND	ND	ND	ND	0.032	0.029	0.18	0.19
Lead, Total	ug/l	15	Р	ND	ND										
Magnesium, Total	None	50		0.44	0.29	0.12	0.12	0.24	0.23	1.9	1.7	7.4	7	32	32
Manganese, Total	ug/l	50	S	5.1 ND	4 ND	ND ND	ND ND	2.4 ND	2.2 ND	17 ND	14 ND	58 ND	64 ND	410 ND	410 ND
Mercury Nickel, Total	ug/l ug/l	2 100	P P	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND										
Silver, Total	ug/l	100	S	ND	ND										
Thallium, Total	ug/l	2	Р	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND										
Volatile Organic Compounds	11	-		N/D	N/D		N/D		N/D	N/D	N/D				ND.
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l	5	P P	ND ND	ND ND										
1,2-Dichloroethane	ug/l ug/l	0.5	P	ND	ND										
Benzene	ug/l	1	P	ND	ND										
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND										
Chlorobenzene	ug/l	70	Р	ND	ND										
Chloromethane (Methyl Chloride)	ug/l			ND	ND										
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND										
Di-Isopropyl Ether Ethylbenzene	ug/l ug/l	300	Р	ND ND	ND ND										
Ethyl Tert Butyl Ethei	ug/l	500	r	ND	ND										
Freon 11	ug/l	150	Р	ND	ND										
Freon 113	ug/l	1200		ND	ND										
Methylene Chloride	ug/l	5	Р	ND	ND										
MTBE	ug/l	13	Р	ND	ND										
Styrene Tert Amyl Methyl Ether	ug/l	100	Р	ND ND	ND ND										
Tetrachloroethylene (PCE)	ug/l ug/l	5	Р	ND ND	ND ND										
Toluene	ug/l	150	P	ND	ND										
Total Trihalomethanes	ug/l	80	P	ND	ND										
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND										
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND										
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND										
Xylenes (Total)	ug/l	1750	Р	ND	ND										
Others	n. /1	1		ND	ND										
1,4-Dioxane	ug/l	1 6	N P	ND ND	ND ND										
Perchlorate	110/1												110		
Perchlorate Surfactants	ug/l mg/l	0.5	r S	ND	ND	0.11	ND								

Page 14 of 34

Countil and			ype			Long E	Beach #2		
Constituents	Units	MCL	MCL Type	Zone 1 3/24/2020	Zone 2 3/24/2020	Zone 3 3/24/2020	Zone 4 3/24/2020	Zone 5 3/24/2020	Zone 6 3/24/2020
General Minerals	_	F	2	5/2 1/2020	5/2 1/2020	512 112020	5/2 1/2020	572 172020	5/2 1/2020
Alkalinity	mg/l			310	190	160	150	280	300
Anion Sum	meq/l			6.8	4.4	3.8	6.5	16	19
Bicarbonate as HCO3	mg/l	1		380	230	190	180	340	370
Boron Bromide	mg/l ug/l	1	Ν	0.51 210	0.19 140	0.14 140	0.092 240	0.3 960	0.25
Calcium, Total	mg/l			6.8	140	140	58	180	230
Carbon Dioxide	mg/l			3.9	ND	ND	ND	7	7.6
Carbonate as CO3	mg/l			3.9	3	3.9	2.3	ND	ND
Cation Sum	meq/l			6.9	4.4	3.6	6.4	17	20
Chloride	mg/l	500	S	22	20	23	63	120	150
Fluoride	mg/l	2	Р	0.61	0.44	0.51	0.27	0.18	0.25
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
lodide	ug/l			42	32	31	43	31	44
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			1.9	1.3	ND	2.9	5.1	5.6
Sodium, Total Sulfate	mg/l	500	0	150 ND	79 ND	67 ND	66 81	130 320	120 400
Foulfate Fotal Dissolved Solid (TDS)	mg/l	500 1000	S	ND 390	ND 260	ND 220	81 400	<u>320</u> 990	400 1100
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S P	390 ND	260 ND	220 ND	400 ND	990 ND	ND
General Physical Properties	mg/1	10	r	ND	ND		ND	nD	ND
Apparent Color	ACU	15	S	200	35	25	3	3	5
Hardness (Total, as CaCO3)	mg/l		5	23	44	37	170	560	720
Lab pH	Units			8.2	8.3	8.5	8.3	7.9	7.9
Langelier Index - 25 degree	None			0.21	0.42	0.44	0.88	1.2	1.4
Ddor	TON	3	S	4	2	1	4	2	2
Specific Conductance	umho/cm	1600		640	410	360	650	1400	1700
Furbidity	NTU	5	S	0.64	0.21	0.12	0.34	1.3	1.4
Metals									
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	4.4	5.6
Barium, Total	ug/l	1000		5.8	10	5.6	40	63	81
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	1200		0.28	0.18	0.3	0.091	0.055	0.067
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND
ron, Total Lead, Total	mg/l	0.3	S	0.088 ND	0.026 ND	ND ND	0.027 ND	0.23 ND	0.24 ND
Magnesium, Total	ug/l None	15	Р	1.4	1.6	1.1	6.2	27	35
Manganese, Total	ug/l	50	S	1.4	1.0	7.2	27	180	370
Aercury	ug/l	2	P	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND
Zine, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
olatile Organic Compounds		L							
,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	2.5
,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	0.85
,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND 2.4	ND
is-1,2-Dichloroethylene	ug/l	6	Р	ND	ND ND	ND	ND	3.4 ND	9.6 ND
Di-Isopropyl Ether	ug/l ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
thyl Tert Butyl Ether	ug/l	500	P	ND	ND	ND	ND	ND	ND
reon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND
reon 113	ug/l	1200		ND	ND	ND	ND	ND	ND
Aethylene Chloride	ug/1 ug/1	5	P	ND	ND	ND	ND	ND	ND
ITBE	ug/l	13	P	ND	ND	ND	ND	13	13
tyrene	ug/1	100		ND	ND	ND	ND	ND	ND
ert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND
etrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND
oluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND
otal Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND
rans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	1.1
richloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND
vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
(Ylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others									
,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	2.3	10
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	0.11
Fotal Organic Carbon	mg/l			11	3.8	2.3	1.3	1.2	1.3

Page 15 of 34

			/pe						Long B	each #6					
Constituents	Units	MCL	MCL Type	Zor 3/17/2020	ne 1 8/24/2020	Zor 3/17/2020	ne 2 8/24/2020	Zor 3/17/2020	ne 3 8/24/2020	Zor 3/17/2020	ne 4 8/24/2020	Zor 3/17/2020	ne 5 8/24/2020	Zor 3/17/2020	ne 6 8/24/2020
General Minerals	1	V	2	5/17/2020	0/24/2020	3/1//2020	0/24/2020	5/17/2020	0/24/2020	3/1//2020	8/24/2020	5/1//2020	0/24/2020	5/1//2020	0/24/2020
Alkalinity	mg/l			540	540	300	350	170	170	120	120	120	120	130	130
Anion Sum	meq/l			11	11	6.5	7.5	3.8	3.8	3.2	3.2	3.1	3.1	4.6	4.8
Bicarbonate as HCO3	mg/l			660	650	360	420	200	200	150	150	140	140	160	160
Boron	mg/l	1	Ν	1.1 340	1.1	0.54	0.6	0.23	0.23	0.09	0.09	0.081	ND 91	ND 250	ND 270
Bromide Calcium, Total	ug/l mg/l			7.7	330 7.6	200 4.8	5.8	130 5.2	130 5.2	55 9.2	58 9.5	89 11	81 13	350 49	370 56
Carbon Dioxide	mg/l			3.4	2.7	4.0 ND	ND	ND	ND	9.2 ND	9.5 ND	ND	ND	2.1	ND
Carbonate as CO3	mg/l			14	17	9.3	11	8.2	8.2	3.9	3.9	3.6	3.6	ND	ND
Cation Sum	meq/l			11	10	6.6	6.9	3.6	3.6	3	3.1	3	3.4	4.6	5.5
Chloride	mg/l	500	S	17	18	19	18	17	17	12	13	19	19	58	64
Fluoride	mg/l	2	Р	0.69	0.7	0.67	0.65	0.6	0.61	0.56	0.58	0.51	0.54	0.22	0.23
Hydroxide as OH, Calculated	mg/l			ND	ND										
Iodide	ug/l	45	_	23	110	65	71	39	40 ND	15	12	29	28	93	95 ND
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND										
Nitrite, as Nitrogen	mg/l	10	P	ND	ND										
Potassium, Total	mg/l		1	1.6	1.7	ND	1	ND	ND	ND	ND	ND	ND	1.9	ND
Sodium, Total	mg/l			230	220	140	150	76	77	59	60	54	62	40	50
Sulfate	mg/l	500	S	ND	ND	ND	ND	ND	ND	15	16	9.3	9.6	17	19
Total Dissolved Solid (TDS)	mg/l	1000	S	660	690	390	460	240	240	200	200	190	190	280	290
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND										
General Physical Properties	1.011	10		200	450	150	250	100	150	40					
Apparent Color	ACU mg/l	15	S	200	450	150	250	120	150	40	35 26	45	40	ND 140	ND 170
Hardness (Total, as CaCO3) Lab pH	mg/l Units			25 8.5	25 8.6	15 8.6	18 8.6	14 8.8	14 8.8	25 8.6	26 8.6	30 8.6	37 8.6	8.1	8.2
Lao pri Langelier Index - 25 degree	None			0.72	0.8	0.39	0.55	0.36	0.37	0.31	0.33	0.3	0.37	0.54	0.75
Odor	TON	3	S	2	4	2	2	2	2	2	1	2	1	2	1
Specific Conductance	umho/cm	1600	S	1000	1000	620	700	360	380	320	320	310	310	480	480
Turbidity	NTU	5	S	0.48	0.92	0.78	0.47	0.41	0.3	0.19	0.27	0.19	0.22	0.18	0.14
Metals															
Aluminum, Total	ug/l	1000	Р	ND	ND										
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	2.7	2.5	ND	ND	ND	ND	ND	ND	ND	ND	2.4	2.1
Barium, Total	ug/l	1000	P P	6.5 ND	6.2 ND	5.3 ND	6.3 ND	4.1 ND	3.9 ND	ND	6.6 ND	2.5 ND	2.2 ND	21 ND	20 ND
Beryllium, Total Cadmium, Total	ug/l ug/l	5	P	ND	ND										
Chromium, Total	ug/l	50	P	ND	1	ND	ND	ND	1	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	50	1	0.28	0.063	0.32	0.061	0.3	0.062	0.29	0.044	0.26	0.06	0.09	ND
Copper, Total	ug/l	1300	Р	ND	ND										
Iron, Total	mg/l	0.3	S	0.081	0.076	0.064	0.066	0.038	0.032	ND	ND	ND	ND	0.053	ND
Lead, Total	ug/l	15	Р	ND	ND										
Magnesium, Total	None			1.5	1.5	0.76	0.92	0.2	0.2	0.55	0.56	0.71	1.2	4.6	6.5
Manganese, Total	ug/l	50	S	14	13	11	12	3.8	3.3	15	15	3.9	4	52	52
Mercury	ug/l	2 100	Р	ND ND	ND ND										
Nickel, Total Selenium, Total	ug/l ug/l	50	P P	ND	ND	ND	ND	ND	ND	14	ND	10	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND										
Thallium, Total	ug/l	2	P	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND										
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	Р	ND	ND										
1,1-Dichloroethylene	ug/l	6	Р	ND	ND										
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Benzene Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/1 ug/1	70	P	ND	ND										
Chloromethane (Methyl Chloride)	ug/l	, ,	È	ND	ND										
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND										
Di-Isopropyl Ether	ug/l			ND	ND										
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ethei	ug/l			ND	ND										
Freen 11	ug/l	150	P	ND	ND										
Freon 113 Mathylana Chlarida	ug/l	1200		ND	ND										
Methylene Chloride MTBE	ug/l ug/l	5 13	P P	ND ND	ND ND										
Styrene	ug/l	100	P	ND	ND										
Tert Amyl Methyl Ether	ug/l		È	ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND										
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	Р	ND	ND										
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND										
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND										
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND										
Xylenes (Total)	ug/l	1750	Р	ND	ND										
Others 1,4-Dioxane	pa/1	1	λĭ	ND	ND										
Perchlorate	ug/l ug/l	6	N P	ND ND	ND ND										
	mg/l	0.5	P S	ND	ND										
Surfactants															

Page 16 of 34

Constituents			ype					Los An	geles #1				
Constituents	Units	MCL	MCL Type	Zon 3/18/2020	ne 1 9/17/2020	Zor 3/18/2020	ne 2 9/17/2020	Zor 3/18/2020	ne 3 9/17/2020	Zoi 3/18/2020	ne 4 9/17/2020	Zoi 3/18/2020	ne 5 9/17/2020
General Minerals	-	~	<u>F.</u>	3/10/2020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5/10/2020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5/10/2020	<i>3.11.2020</i>	5, 10, 2020	<i>JITTE</i> 020	5, 10, 2020	<i></i>
Alkalinity	mg/l			180	180	180	180	180	180	200	200	220	220
Anion Sum	meq/l			5.9	6	6	6.1	6.1	6.2	7.8	7.6	10	11
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	220 0.14	220 0.13	220 0.14	220 0.13	220 0.15	220 0.14	240 0.15	240 0.14	270 0.18	270 0.17
Bromide	ug/l	1	IN	130	120	100	100	110	110	170	160	310	310
Calcium, Total	mg/l			56	56	62	61	62	61	80	76	100	110
Carbon Dioxide	mg/l			3.6	2.9	5.7	4.5	4.5	4.5	6.2	5	100	7
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			5.8	5.8	6	6	6.1	6.1	7.7	7.4	10	10
Chloride	mg/l	500	S	24	25	22	24	23	25	40	38	76	80
Fluoride	mg/l	2	Р	0.3	0.29	0.48	0.46	0.41	0.4	0.45	0.42	0.42	0.4
Hydroxide as OH, Calculated Iodide	mg/l		\vdash	ND 24	ND 29	ND 19	ND 24	ND ND	ND ND	ND 12	ND 19	ND ND	ND ND
Nitrate (as NO3)	ug/l mg/l	45	Р	Z4 ND	ND	ND	Z4 ND	ND	ND	20	19	65	ND 64
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	4.4	3	15	14
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3.8	3.9	3.1	3.3	3	3.2	3.6	3.8	4.3	4.4
Sodium, Total	mg/l			43	44	38	39	39	40	46	45	55	55
Sulfate	mg/l	500	S	76	76	83	84	85	86	110	110	140	140
Total Dissolved Solid (TDS)	mg/l	1000	S	360	370	360	350	360	360	460	430	620	630
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	4.4	3	15	14
General Physical Properties Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	ND	ND	ND	3	ND
Apparent Color Hardness (Total, as CaCO3)	MCU mg/l	13	5	ND 190	ND 190	ND 210	ND 210	ND 220	ND 210	ND 280	ND 270	360	ND 380
Lab pH	Units	\vdash	\vdash	8	8.1	7.8	7.9	7.9	7.9	7.8	7.9	7.6	7.8
Langelier Index - 25 degree	None		H	0.64	0.77	0.53	0.63	0.59	0.59	0.66	0.69	0.65	0.84
Odor	TON	3	S	2	ND	1	ND	1	ND	2	ND	1	ND
Specific Conductance	umho/cm	1600	S	550	560	580	580	580	550	730	670	970	940
Turbidity	NTU	5	S	0.1	0.1	1	0.34	ND	0.16	0.2	0.25	0.13	0.14
Metals													
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total Barium, Total	ug/l	10 1000	P	ND 31	ND 31	ND 52	ND 51	ND 76	ND 75	ND 110	1.1 98	ND 150	ND 150
Beryllium, Total	ug/l ug/l	4	P P	31 ND	ND ND	32 ND	ND ND	76 ND	/5 ND	ND	98 ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/1	50	P	ND	ND	ND	ND	ND	ND	110	64	380	340
Hexavalent Chromium (Cr VI)	ug/l			0.095	ND	0.051	ND	0.34	0.32	110	66	390	320
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	0.19	0.19	ND	ND	ND	ND	ND	ND
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	50		12	12	14	14	15	15	20	19	28	27
Manganese, Total	ug/l	50	S	14	15	47	48 ND	7.3	6.2	ND	ND	ND	ND
Mercury Nickel, Total	ug/l ug/l	2 100	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/1 ug/1	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	23	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1	ND 0.92
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.92 ND
Chloromethane (Methyl Chloride)	ug/l	,0	H	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/1 ug/1	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113 Mathylana Chlarida	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride MTBE	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100	H	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	1.4	1.2	ND	ND	ND	ND	0.93	0.55	2	2.5
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND	ND	ND	0.62	0.61
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	4.5	3.3	ND	ND	ND	ND	9.6	6	30	32
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others	/I			ND	ND		NID	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ug/l ug/l	1 6	N P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.3	ND 0.95	ND 3.9	ND 4.2
		0	- F	110	110	110	1110		110	1.3	0.95	3.7	7.2
Perchlorate Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Page 17 of 34

Constituents			ype				Los An	geles #2			
Constituents	Units	MCL	MCL Type	Zoi 3/25/2020	ne 2 9/28/2020	Zor 3/25/2020	ne 3 9/28/2020	Zor 3/25/2020	ne 4 9/28/2020	Zo: 3/25/2020	ne 5 9/28/2020
General Minerals											
Alkalinity	mg/l			310	310	310	310	340	340	310	310
Anion Sum Bicarbonate as HCO3	meq/l mg/l			19 380	20 380	19 380	20 380	20 410	20 420	24 370	24 370
Boron	mg/l	1	N	0.25	0.24	0.24	0.22	0.28	0.27	0.46	0.42
Bromide	ug/l		14	600	700	560	570	740	800	720	730
Calcium, Total	mg/l			210	200	210	200	210	200	250	220
Carbon Dioxide	mg/l			6.2	12	12	12	13	17	7.6	15
Carbonate as CO3	mg/l			2.5	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			20	19	20	19	21	19	26	23
Chloride	mg/l	500		260	260	270	280	240	240	160	170
Fluoride	mg/l	2	Р	0.21	0.2	0.33	0.32	0.35	0.35	0.31	0.31
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND 94	ND	ND
Iodide Nitrate (as NO3)	ug/l mg/l	45	Р	76 ND	100 ND	65 ND	81 ND	73 ND	94 ND	45 ND	57 ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			10	11	7.3	7.3	8	8	11	10
Sodium, Total	mg/l			100	100	120	100	140	120	160	140
Sulfate	mg/l	500	S	280	290	250	260	290	310	620	610
Total Dissolved Solid (TDS)	mg/l	1000		1100	1100	1100	1100	1200	1200	1500	1400
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties	ACTI	16		ND	ND	25	20	25	20	10	
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	ND 750	ND 720	25 740	20 700	25 730	20 700	10 900	ND 800
Lab pH	mg/l Units			750 8	720	7.7	7.0	730	7.6	900 7.9	800 7.6
Lab pH Langelier Index - 25 degree	None			8	1.2	1.2	1.1	1.2	1.1	1.4	7.6
Odor	TON	3	S	1.4	1.2	2	1.1	1.2	1.1	4	8
Specific Conductance	umho/cm	1600		1800	1800	1800	1800	1800	1800	1900	2000
Turbidity	NTU	5	S	1.9	1.6	13	12	15	14	13	24
Metals											
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	7.2	4.9
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	ND	ND	3.2	3.6
Barium, Total	ug/l	1000	_	86	85	140	140	97	97	55	50
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total Chromium, Total	ug/l ug/l	5 50	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexavalent Chromium (Cr VI)	ug/l	30	Р	0.068	ND	ND	ND	ND	ND	0.08	ND
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.19	0.18	1.2	1.2	1.4	1.3	0.11	0.19
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None			55	54	52	50	51	49	68	61
Manganese, Total	ug/l	50	S	360	350	180	170	110	97	540	530
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100		ND	ND	ND	ND	ND	ND	6.8	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND
Thallium, Total Zinc, Total	ug/l	2 5000	P S	ND	ND	ND ND	ND ND	ND	ND ND	ND 570	470
Volatile Organic Compounds	ug/l	3000	5	ND	ND	ND	ND	ND	ND	370	470
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	0.63	0.61
Di-Isopropyl Ether	ug/l	200		ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Ethyl Tert Butyl Ether	ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether Freon 11	ug/l ug/l	150	Р	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13		ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	_	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC) Xylenes (Total)	ug/l	0.5 1750	P P	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
Others	ug/l	1750	P	UND	IND.	ND	ND	ND	1ND	ND	IND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	1.2	1.3	ND	ND
Perchlorate	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			0.58	0.68	0.67	0.68	0.68	0.76	1.4	1.5

Page 18 of 34

Constituents			ype						Los An	geles #3					
Constituents	Units	MCL	MCL Type	Zor 4/15/2020	ne 1 8/26/2020	Zoi 4/15/2020	ne 2 8/26/2020	Zor 4/15/2020	ne 3 8/26/2020	Zor 4/15/2020	ne 4 8/26/2020	Zo: 4/15/2020	ne 5 8/26/2020	Zoi 4/15/2020	ne 6 8/26/2020
General Minerals	_	I	R.		0.20.2020		0/20/2020	110/2020	0,20,2020		0,20,2020	110/2020	0.20.2020		0.20.2020
Alkalinity	mg/l			240	240	180	180	190	180	190	190	210	210	220	ND
Anion Sum Bicarbonate as HCO3	meq/l			6.4	6.4	5.8 220	5.9 220	6	6 220	6.5	6.5	9	9	12	7.4
Boron	mg/l mg/l	1	N	300 0.33	290 0.34	0.13	0.14	230 0.14	0.14	240 0.14	230 0.14	260 0.2	250 0.2	270 0.18	ND 0.18
Bromide	ug/l	1	IN	230	260	130	140	110	100	190	180	240	250	520	520
Calcium, Total	mg/l			16	16	58	58	60	61	65	65	92	92	130	130
Carbon Dioxide	mg/l			2.5	2.4	2.9	3.6	4.7	4.5	3.9	4.7	5.4	6.5	5.6	ND
Carbonate as CO3	mg/l			3.9	3.8	ND	ND								
Cation Sum Chloride	meq/l	500	0	6.6 37	6 37	5.8 25	5.9 27	5.9 22	6 22	6.4 37	6.4 37	8.8 56	8.8 59	11 120	11 120
Fluoride	mg/l mg/l	2	S P	0.32	0.31	0.33	0.31	0.46	0.44	0.43	0.42	0.34	0.33	0.35	0.34
Hydroxide as OH, Calculated	mg/l	2	1	ND	ND										
Iodide	ug/l			74	80	35	40	29	29	42	50	ND	ND	ND	ND
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND	42	42	28	28
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	9.6	9.6	6.4	6.4
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND 4.2	ND 3.4	ND 3.5	ND 3.4	ND 3.6	ND 3.8	ND 3.9	ND 4.1	ND 4.2	ND 4.1	ND 4.2
Potassium, Total Sodium, Total	mg/l mg/l		-	4 120	4.2	3.4 40	3.5 41	3.4 40	3.6 41	3.8 42	43	4.1	4.2	4.1	4.2
Sulfate	mg/l	500	S	24	24	73	74	77	79	75	77	120	120	160	170
Total Dissolved Solid (TDS)	mg/l	1000	S	380	390	340	340	340	350	400	380	540	530	700	680
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	9.6	9.6	6.4	6.4
General Physical Properties															
Apparent Color	ACU	15	S	15	10	ND	ND								
Hardness (Total, as CaCO3) Lab pH	mg/l Units			63 8.3	63 8.3	200 8.1	200 8	210 7.9	210 7.9	220 8	220	320 7.9	320 7.8	440 7.9	440 5.7
Lao pH Langelier Index - 25 degree	None			8.3 0.54	0.5	0.72	0.68	0.61	0.62	0.72	0.65	0.8	0.74	0.97	-3.7
Odor	TON	3	S	0.34	ND	0.72 ND	0.08 ND	ND	0.02 ND	1	0.03 ND	ND	0.74 ND	1	-3.7 ND
Specific Conductance	umho/cm	1600	S	590	600	530	540	540	570	590	620	820	850	1000	ND
Turbidity	NTU	5	S	ND	0.12	0.25	0.28	0.2	0.18	0.25	0.25	0.2	0.12	0.28	0.19
Metals															
Aluminum, Total	ug/l	1000	Р	ND	ND										
Antimony, Total	ug/l	6 10	P	ND ND	ND ND										
Arsenic, Total Barium, Total	ug/l ug/l	1000	P P	9.5	9.7	22	23	46	47	74	77	ND 140	140	120	130
Beryllium, Total	ug/1 ug/1	4	P	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND	2.1	2.2	6	6
Hexavalent Chromium (Cr VI)	ug/l			0.14	ND	0.13	ND	0.12	ND	0.13	ND	2.2	2	6	5.9
Copper, Total	ug/l	1300	Р	ND	ND										
Iron, Total Lead, Total	mg/l ug/l	0.3	S P	ND ND	ND ND	0.028 ND	0.03 ND	ND ND	ND ND	0.056 ND	0.057 ND	ND ND	ND ND	ND ND	ND ND
Magnesium, Total	None	15	r	5.5	5.5	13	13	14	14	14	14	22	22	29	29
Manganese, Total	ug/l	50	S	24	24	97	96	52	52	44	43	ND	ND	ND	ND
Mercury	ug/l	2	Р	ND	ND										
Nickel, Total	ug/l	100	Р	ND	ND										
Selenium, Total	ug/l	50	Р	ND	ND	11	11								
Silver, Total Thallium, Total	ug/l	100	S P	ND ND	ND ND										
Zinc, Total	ug/l ug/l	2 5000	P	ND	ND										
Volatile Organic Compounds	ug/1	5000		11D	ПЪ	TLD .	ND	ILD.	ПЪ	IND.	TLD .	ND	ПD	ND	ND
1,1-Dichloroethane	ug/l	5	Р	ND	ND										
1,1-Dichloroethylene	ug/l	6	Р	ND	ND										
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND										
Benzene	ug/l	1	P	ND	ND										
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	0.5	P P	ND ND	ND ND										
Chloromethane (Methyl Chloride)	ug/l	70	r	ND	ND										
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND										
Di-Isopropyl Ether	ug/l			ND	ND										
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l	1.50	-	ND	ND										
Freen 11	ug/l	150	P	ND ND	ND ND										
Freon 113 Methylene Chloride	ug/l ug/l	1200 5	P P	ND ND	ND ND										
MTBE	ug/1 ug/1	13	P	ND	ND										
Styrene	ug/l	100		ND	ND										
Tert Amyl Methyl Ether	ug/l			ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.53	2.9	2.9
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	P	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	0.8 ND	0.75	ND ND	ND ND
trans-1,2-Dichloroethylene Trichloroethylene (TCE)	ug/l ug/l	10 5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.2	ND 7	ND ND	ND 0.52
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	4.2 ND	/ ND	ND	0.52 ND
Xylenes (Total)		1750		ND	ND										
Others			1										1		
1,4-Dioxane	ug/l	1	Ν	ND	ND										
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	1.7	1.4	0.98	0.88
Surfactants	mg/l	0.5	S	ND	ND	ND	ND 0.21	ND	ND 0.20	ND	ND 0.20	ND 0.20	ND 0.51	ND 0.22	ND
Total Organic Carbon	mg/l	I	<u> </u>	1.8	1.8	ND	0.31	ND	0.29	ND	0.29	0.39	0.51	0.33	0.5

Page 19 of 34

			be						Los An	geles #4					
Constituents	Units	MCL	MCL Type	Zor 3/26/2020	ne 1 9/1/2020	Zor 3/26/2020	ne 2 9/1/2020	Zor 3/26/2020	ne 3 9/1/2020	Zor 3/26/2020	ne 4 9/1/2020	Zoi 3/26/2020	ne 5 9/1/2020	Zor 3/26/2020	ne 6 9/1/2020
General Minerals	r	2	Z	3/20/2020	9/1/2020	3/20/2020	9/1/2020	3/20/2020	9/1/2020	3/20/2020	9/1/2020	3/20/2020	9/1/2020	3/20/2020	9/1/2020
Alkalinity	mg/l			1600	1600	450	440	170	170	180	180	170	170	170	170
Anion Sum	meq/l			32	32	9.2	9.1	5.6	5.6	5.8	5.8	5.7	5.7	6.6	6.6
Bicarbonate as HCO3	mg/l			1900	1900	540	540	210	210	220	210	210	210	200	200
Boron	mg/l	1	Ν	5.6 600	5.6 590	0.5	0.5 64	0.13	0.12 96	0.12	0.12 96	0.13 98	0.13 96	0.15	0.14 180
Bromide Calcium, Total	ug/l mg/l			12	12	65 17	17	58	96 56	55	96 56	98 59	58	69	65
Carbon Dioxide	mg/l			20	25	5.6	7	2.2	2.7	2.9	3.4	2.2	3.4	2.6	4.1
Carbonate as CO3	mg/l			20	16	5.6	4.4	2.2	ND	ND	ND	2.2	ND	ND	ND
Cation Sum	meq/l			33	31	8.7	8.3	5.8	5.7	5.5	5.7	5.8	5.7	6.8	6.5
Chloride	mg/l	500	S	30	31	7.1	7.5	20	21	20	21	20	21	48	48
Fluoride	mg/l	2	Р	0.38	0.36	0.27	0.26	0.3	0.29	0.38	0.38	0.36	0.34	0.22	0.22
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l	15	_	150	210	14	21	20	28	ND	38	25	32	3.4	4.4
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	12	8.7
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 ND
Potassium, Total	mg/l	1	r	13	13	11	11	2.8	3	3.3	3.5	3.4	3.6	3.4	3.4
Sodium, Total	mg/l			720	670	160	150	43	43	39	41	40	40	51	49
Sulfate	mg/l	500	S	ND	ND	ND	ND	77	78	76	77	78	79	81	82
Total Dissolved Solid (TDS)	mg/l	1000	S	2100	2100	500	520	320	340	330	340	330	340	390	380
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7	2
General Physical Properties															
Apparent Color	ACU	15	S	1500	1500	60	70	ND							
Hardness (Total, as CaCO3)	mg/l			55	55	73	72	190	180	190	190	200	190	220	210
Lab pH	Units			8.2	8.1	8.2	8.1	8.2	8.1	8.1	8	8.2	8	8.1	7.9
Langelier Index - 25 degree Odor	None TON	3	c	1.1 4	1 8	0.73	0.63	0.86	0.75 ND	0.72	0.59 ND	0.83	0.68 ND	0.76	0.62 ND
Specific Conductance	umho/cm	3 1600	S S	4 2800	2700	4 840	840	540	520	550	520	530	520	650	640
Turbidity	NTU	5	S	0.74	0.31	0.52	0.52	0.14	0.19	0.13	0.36	0.28	0.42	0.67	0.8
Metals		2		0.71	0.51	0.02	0.02	0.111	0.17	0.15	0.50	0.20	0.12	0.07	0.0
Aluminum, Total	ug/l	1000	Р	20	ND										
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	2.8	2.2	6.5	6.9	ND	ND	1.8	2	1.2	1.2	1.6	1.7
Barium, Total	ug/l	1000	Р	34	34	36	35	16	ND	70	68	61	62	65	64
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	2.4	2.5	ND	1.2	ND							
Hexavalent Chromium (Cr VI) Copper, Total	ug/l	1300	Р	0.4 ND	0.18 ND	0.12 ND	0.036 ND	0.08 ND	ND ND	0.08 ND	ND ND	0.072 ND	ND ND	1.1 ND	0.96 ND
Iron, Total	ug/l mg/l	0.3	P S	0.65	0.58	0.12	0.12	ND	ND	ND	0.02	0.059	0.078	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.076 ND	ND	ND
Magnesium, Total	None	10		6.2	6.1	7.4	7.3	12	11	12	12	12	12	13	12
Manganese, Total	ug/l	50	S	21	16	48	46	39	ND	46	42	63	62	73	66
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total Volatile Organic Compounds	ug/l	5000	s	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/1 ug/1	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/1 ug/1	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Ethyl Tert Butyl Ethei	ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l ug/l	150	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11 Freon 113	ug/l ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/1 ug/1	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Vinyl chloride (VC) Xylenes (Total)	ug/l ug/l	0.5 1750	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/1	1/30	Р	IND	ND	IND	ND	IND	мD	IND	ND	IND	ND	IND	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/1 ug/1	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l		1	140	130	7.9	7.4	ND	0.32	ND	0.29	ND	0.26	ND	0.3

Page 20 of 34

Constituents			ype						Los An	geles #5					
Constituents	Units	MCL	MCL Type	Zor 4/15/2020	ne 1 8/26/2020	Zor 4/14/2020	ne 2 8/25/2020	Zor 4/14/2020	ne 3 8/25/2020	Zor 4/14/2020	ne 4 8/25/2020	Zo: 4/14/2020	ne 5 8/25/2020	Zoi 4/14/2020	ne 6 8/25/2020
General Minerals		,	_												
Alkalinity	mg/l			880	860	930	930	170	170	230	230	220	220	190	190
Anion Sum	meq/l			120	120	30	31	5.4	5.4	9.7	10	8.4	8.4	6.9	7
Bicarbonate as HCO3	mg/l			1100	1000	1100	1100	200	200	280	280	270	270	230	230
Boron	mg/l	1	Ν	7.2 34000	7.2 33000	2.7	2.5 3700	0.12	0.12	0.26	0.26	0.15	0.15	0.14	0.14
Bromide Calcium, Total	ug/l			42	42	3600 22	21	53	98 52	98	98	780 84	780 85	160 74	150 75
Carbon Dioxide	mg/l mg/l			42	16	11	14	2.6	3.3	4.6	5.8	3.5	4.4	3.8	3.8
Carbonate as CO3	mg/l			7.1	6.5	11	9	ND	ND	ND	ND	2.2	ND	ND	ND
Cation Sum	meq/l			100	100	29	28	5.4	5.4	9.8	9.7	8.2	8.2	7.1	7.1
Chloride	mg/l	500	S	3600	3700	420	440	21	21	170	180	120	120	30	31
Fluoride	mg/l	2	P	0.12	0.12	0.21	0.23	0.27	0.25	0.26	0.27	0.3	0.31	0.38	0.39
Hydroxide as OH, Calculated	mg/l			ND	ND										
Iodide	ug/l			12000	12000	940	1200	27	26	340	260	180	180	37	34
Nitrate (as NO3)	mg/l	45	Р	ND	ND										
Nitrate as Nitrogen	mg/l	10	Р	ND	ND										
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND										
Potassium, Total	mg/l			35	37	20	16	3	3.2	5.3	5.3	4.2	4.3	3	3.1
Sodium, Total	mg/l			2200	2200	600	590	44	45	65	63	52	52	46	46
Sulfate	mg/l	500	S	ND	ND	ND	ND	69	70	18	16	26	24	110	110
Total Dissolved Solid (TDS)	mg/l	1000	S	7100	6400	1700	1700	320	320	560	570	450	450	410	410
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND										
General Physical Properties	ACU	15	-	150	150	250	200	ND	ND	ND	ND		ND	ND	ND
Apparent Color	ACU mg/l	15	S	150 300	150 290	250 110	280 100	ND 170	ND 170	ND 340	ND 340	3 290	ND 290	ND 250	ND 250
Hardness (Total, as CaCO3)	mg/l			300		8.2	8.1	8.1		340		290		250 8	250 8
Lab pH Langelier Index - 25 degree	Units None		-	8 1.2	8	8.2	0.1	8.1 0.72	8 0.63	8 0.99	7.9 0.87	8.1 0.99	8 0.9	8 0.74	8 0.75
Odor	TON	3	S	2	8	2	4	2	2	0.99	1	0.99	0.9 ND	2	0.75 ND
Specific Conductance	amho/cm	1600	S	12000	12000	2900	2800	530	530	980	990	790	830	640	640
Turbidity	NTU	5	S	4.7	0.5	0.54	0.55	0.19	0.24	0.8	0.99	0.52	0.44	0.3	0.38
Metals		2	0	,	0.0	0.5 .	0.00	0.17	0.21	0.0	0.77	0.02	0	0.5	0.50
Aluminum, Total	ug/l	1000	Р	ND	ND										
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	16	15	1.7	1.5	ND	ND	ND	1	ND	ND	ND	ND
Barium, Total	ug/l	1000	Р	67	67	26	28	24	26	77	84	87	93	67	63
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total	ug/l	50	Р	ND	ND	1.6	1.6	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.041	ND	0.086	0.054	ND	ND	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300	Р	ND	ND										
Iron, Total	mg/l	0.3	S	0.34	0.37	0.23	0.23	0.031	0.041	0.21	0.24	0.16	0.16	0.023	0.024
Lead, Total	ug/l	15	Р	ND	ND										
Magnesium, Total	None	50	_	47	46	13	12	10	9.9	23	23	19	19	16	16
Manganese, Total	ug/l	50	S	39 ND	36	48	47 ND	41 ND	46	140	140	130 ND	130 ND	35 ND	33 ND
Mercury Nickel, Total	ug/l	2 100	P P	ND ND	ND ND										
Selenium, Total	ug/l ug/l	50	P	73	77	6.6	6.6	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/1 ug/1	100	r S	ND	ND										
Thallium, Total	ug/l	2	P	ND	ND										
Zinc, Total	ug/1 ug/1	5000	S	ND	ND										
Volatile Organic Compounds			Ē												
1,1-Dichloroethane	ug/l	5	Р	ND	ND										
1,1-Dichloroethylene	ug/l	6	Р	ND	ND										
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND										
Benzene	ug/l	1	Р	ND	ND										
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND										
Chlorobenzene	ug/l	70	Р	ND	ND										
Chloromethane (Methyl Chloride)	ug/l			ND	ND										
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND										
Di-Isopropyl Ether	ug/l	200	I.	ND	ND										
Ethylbenzene Ethyl Tart Dutyl Ethau	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l	150	-	ND ND	ND ND										
Freon 11 Freon 113	ug/l	150	P	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l ug/l	1200 5	P P	ND ND	ND ND										
MTBE	ug/l	13	P	ND	ND										
Styrene	ug/l	100		ND	ND										
Tert Amyl Methyl Ether	ug/1 ug/1	.00	É	ND	ND										
Tetrachloroethylene (PCE)	ug/1	5	Р	ND	ND										
Toluene	ug/1	150	Р	ND	ND										
Total Trihalomethanes	ug/1	80	P	ND	ND										
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND										
Trichloroethylene (TCE)	ug/1	5	P	ND	ND										
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND										
Xylenes (Total)	ug/l	1750	Р	ND	ND										
Others	Ĩ		1							İ			1		
1,4-Dioxane	ug/l	1	Ν	ND	ND										
Perchlorate	ug/l	6	Р	ND	ND										
Surfactants	mg/l	0.5	S	0.4	0.34	ND	ND								
Total Organic Carbon	mg/l			24	25	31	28	0.36	0.58	0.58	0.75	ND	0.6	ND	0.39

Page 21 of 34

Constituents			ype				Los An	geles #6			
Constituents	Units	MCL	MCL Type	Zo: 4/16/2020	ne 1 9/16/2020	Zot 4/16/2020	ne 2 9/16/2020	Zor 4/16/2020	ne 3 9/16/2020	Zo 4/16/2020	ne 4 9/16/2020
General Minerals											
Alkalinity	mg/l			310	300	220	220	280	280	260	260
Anion Sum	meq/l			15	15	8.5	8.8	14	15	10	11
Bicarbonate as HCO3	mg/l	1		380 0.43	370 0.41	270 0.26	270 0.26	340 0.36	340 0.36	320 0.22	310 0.21
Boron Bromide	mg/l ug/l	1	N	2400	2400	870	860	2400	2500	670	620
Calcium, Total	mg/l			11	11	42	44	64	65	89	96
Carbon Dioxide	mg/l			3.1	3.8	2.8	2.8	5.6	5.6	6.6	5.1
Carbonate as CO3	mg/l			4.9	3.8	2.8	2.8	2.2	2.2	ND	2
Cation Sum	meq/l			13	12	8.6	8.2	13	13	9.9	10
Chloride	mg/l	500	S	300	320	120	130	310	330	120	130
Fluoride	mg/l	2	Р	0.25	0.24	0.27	0.27	0.22	0.22	0.46	0.43
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			800	820	280	280	890	740	150	110
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			15	16	7.6	8	10	11	5.5	5.5
Sodium, Total	mg/l	500		260	250	120	110	200	190	80	76
Sulfate	mg/l	500		1.6	1.3	26	27	2.7	2.4	68	110
Total Dissolved Solid (TDS) Total Nitrogen, Nitrate+Nitrite	mg/l	1000	S P	830 ND	830 ND	500 ND	490 ND	800 ND	800 ND	570 ND	620 ND
General Physical Properties	mg/l	10	Р	ND	ND	ND	ND	ND	IND	ND	ND
Apparent Color	ACU	15	S	30	30	10	ND	10	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	15	3	53	53	10	160	220	230	310	330
Lab pH	Units			8.3	8.2	8.2	8.2	8	8	7.9	8
Langelier Index - 25 degree	None			0.45	0.38	0.76	0.88	0.9	0.92	0.89	8
Odor	TON	3	S	1	2	ND	ND	2	2	2	ND
Specific Conductance	umho/cn	1600		1400	1500	860	860	1400	1400	980	980
Turbidity	NTU	5	S	0.47	0.46	0.16	0.27	0.27	0.31	0.2	0.43
Metals											
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	1.4	ND	ND	ND	1.2	ND	1.5	1.4
Barium, Total	ug/l	1000	Р	25	26	33	34	77	79	66	70
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	1.1	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.029	ND	ND	ND	ND	ND	ND	ND
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND	2.2	ND
Iron, Total	mg/l	0.3	S	0.048	0.059	ND	ND	0.06	0.067	0.04	0.056
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	50		6.2 24	6.2 23	11 46	12 45	15 68	16 65	22 89	23 99
Manganese, Total Mercury	ug/l	2	S	ND	ND	40 ND	45 ND	08 ND	05 ND	ND	99 ND
Nickel, Total	ug/l ug/l	100	P P	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	Ũ										
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	13 ND	13 ND
Di-Isopropyl Ether	ug/l	200	-	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Ethyl Tert Putyl Ether	ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ethei Freon 11	ug/l	150	P	ND	ND	ND	ND	ND ND	ND	ND	ND ND
	ug/l	150	P		ND	ND	ND	ND	ND	ND	
Freon 113 Methylene Chloride	ug/l	1200	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MTBE	ug/l ug/l	5	P	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100	1	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150		ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	4.5	8.2
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND
Others					İ						
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
) ID							ND
Surfactants	mg/l	0.5	S	ND 2.1	ND 2.2	ND 0.98	ND	ND	ND	ND	ND

Page 22 of 34

Constitution			vpe								Ι	Jynwo	ood #	1							
Constituents	Units	MCL	MCL Type	Zo1 5/12/2020	ne 1 9/29/2020	Zo: 5/12/2020	ne 2 9/29/2020	Z01 5/13/2020	ne 3 9/30/2020	Zor 5/13/2020	ne 4 9/30/2020	Z01 5/13/2020	ne 5 9/30/2020	Zot 5/13/2020	ne 6 9/30/2020	Zo1 5/13/2020	ne 7 9/30/2020	Zo: 5/12/2020	ne 8 9/29/2020	Zor 5/13/2020	ne 9
General Minerals	-	K.	2																		
Alkalinity	mg/l			570	560	140	130	110	110	140	140	160	160	160	160	180	180	180	180	300	300
Anion Sum	meq/l			12	12	4.2	4.2	4.5	4.5	5	5	4.7	4.8	5.3	5.4	5.9	6.1	7.6	7.6	18	19
Bicarbonate as HCO3	mg/l	1	27	690	680	160	160	140	140	170	160	190	190	200	200	220	220	220	220	360	360
Boron Bromide	mg/l ug/l		Ν	1.3 150	1.3 150	0.16	0.16	0.094	0.09	0.079	0.073	0.078	0.075	0.11	0.11 100	0.11 120	0.11	0.12	0.12	0.16 610	0.17 620
Calcium, Total	mg/l			10	10	5.4	5.4	38	40	45	46	43	45	52	54	59	63	81	84	210	220
Carbon Dioxide	mg/l			4.5	4.4	ND	ND	ND	ND	ND	ND	ND	ND	2.1	2.6	2.9	2.9	4.5	4.5	9.4	12
Carbonate as CO3	mg/l			11	11	5.2	5.2	ND	ND	ND	ND	2.5	2.5	2	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			10	10	3.9	3.9	4.2	4.5	4.8	5	4.5	4.7	5.1	5.4	5.7	6.1	7.3	7.6	17	19
Chloride	mg/l	500	S	9.5	10	20	21	21	21	21	22	20	21	20	21	24	26	51	52	160	170
Fluoride	mg/l	2	Р	0.54	0.52	0.43	0.41	0.31	0.3	0.25	0.25	0.26	0.27	0.34	0.36	0.3	0.31	0.4	0.38	0.31	0.3
Hydroxide as OH, Calculated	mg/l			ND 36	ND 35	ND 36	ND 32	ND 27	ND 24	ND 29	ND 27	ND 20	ND 29	ND	ND 27	ND	ND 34	ND	ND	ND 180	ND
Iodide Nitrate (as NO3)	ug/l mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND	30 ND	ND	28 ND	ND	45 ND	ND	ND 7.3	ND 7.2	ND	160 ND
Nitrate as Nitrogen	mg/l	10	P	ND	ND	1.6	1.6	ND	ND												
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND														
Potassium, Total	mg/l			2.3	2.7	ND	ND	ND	1.1	1.5	1.6	1.7	2	3	3.3	2.6	2.9	3.1	3.4	4.9	5.6
Sodium, Total	mg/l			220	220	84	83	43	46	47	50	47	51	36	39	39	42	40	43	70	78
Sulfate	mg/l	500	S	ND	ND	42	42	76	77	80	81	47	48	70	71	76	80	110	110	370	390
Total Dissolved Solid (TDS)	mg/l	1000		670 ND	680 ND	250 ND	270 ND	270 ND	270 ND	300 ND	310 ND	270 ND	270 ND	300 ND	320 ND	350 ND	360 ND	450	470	1100 ND	1100 ND
Total Nitrogen, Nitrate+Nitrite General Physical Properties	mg/l	10	Р	ND	ND	1.6	1.6	ND	ND												
Apparent Color	ACU	15	S	180	180	40	55	ND	ND	5	ND										
Hardness (Total, as CaCO3)	mg/l		-	33	33	14	14	120	120	140	140	120	120	180	180	190	210	270	280	710	750
Lab pH	Units			8.4	8.4	8.7	8.7	8.2	8.3	8.2	8.2	8.3	8.3	8.2	8.1	8.1	8.1	7.9	7.9	7.8	7.7
Langelier Index - 25 degree	None			0.84	0.78	0.22	0.22	0.51	0.58	0.66	0.64	0.74	0.76	0.72	0.71	0.81	0.82	0.72	0.71	1.2	1.1
Odor	TON	3	S	2	8	2	3	1	2	1	3	1	ND	1	ND	1	1	1	ND	1	ND
Specific Conductance	umho/cm	1600	S	1000	1000	420	410	440	430	490	480	440	460	510	510	560	580	710	720	1600	1600
Turbidity Metals	NTU	5	S	0.32	0.69	0.22	0.24	0.12	0.11	0.11	0.11	ND	0.21	0.13	0.13	0.17	0.25	ND	0.46	2.6	2.9
Aluminum, Total	ug/l	1000	Р	ND	ND	23	22	ND	ND	ND	ND										
Antimony, Total	ug/1 ug/1	6	P	ND	ND	ND	ND														
Arsenic, Total	ug/1 ug/1	10	P	230	220	ND	ND	ND	ND	ND	ND	4.7	4.9	ND	ND	2.8	2.5	1.5	1.6	7.1	6.8
Barium, Total	ug/l	1000	Р	14	14	2	ND	4.9	4.8	150	160	110	120	46	46	110	110	120	120	150	140
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND														
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND														
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND														
Hexavalent Chromium (Cr VI)	ug/l	1300	Р	0.082 ND	0.051 ND	0.051 ND	0.032 ND	ND ND	ND ND	0.02 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.67 ND	0.61 ND	ND ND	ND ND
Copper, Total Iron, Total	ug/l mg/l	0.3	P S	0.074	0.068	ND	ND	ND	ND	ND	ND	ND	ND	0.022	0.022	0.064	0.07	ND	ND	0.36	0.39
Lead, Total	ug/l	15	P	ND	0.000	ND	ND	ND	ND												
Magnesium, Total	None		-	2	2	0.26	0.26	5.3	5.5	5.5	5.7	2.7	2.8	11	11	11	12	17	18	45	49
Manganese, Total	ug/l	50	S	12	11	2.8	2.6	15	15	29	30	25	27	60	59	92	92	ND	ND	240	230
Mercury	ug/l	2	Р	ND	ND	ND	ND														
Nickel, Total	ug/l	100	Р	ND	ND	ND	ND														
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND														
Silver, Total Thallium, Total	ug/l ug/l	100	S P	ND ND	ND ND	ND ND	ND ND														
Zinc, Total	ug/l	5000	r S	ND	ND	ND	ND														
Volatile Organic Compounds	ug/1	2000		112	112			112	112	1.12	112	112	1.12				1.12	112		1.12	1.12
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND														
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND														
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND														
Benzene Carbon Tatua blanida	ug/l	1	Р	ND	ND	ND	ND														
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND														
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	Р	ND ND	ND ND	ND ND	ND ND														
cis-1,2-Dichloroethylene	ug/l ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
Di-Isopropyl Ether	ug/l		Ė	ND	ND	ND	ND														
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND														
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND														
Freon 11	ug/l	150	Р	ND	ND	ND	ND														
Freon 113 Methodana Chlorida	ug/l	1200		ND	ND	ND	ND														
Methylene Chloride MTBE	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND														
Styrene	ug/l ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
Tert Amyl Methyl Ether	ug/1		Ė	ND	ND	ND	ND														
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	3.6	4	ND	ND												
Toluene	ug/l	150	Р	ND	ND	ND	ND														
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND														
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND														
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND														
Vinyl chloride (VC) Xylenes (Total)	ug/l	0.5 1750	P P	ND ND	ND ND	ND ND	ND ND														
Others	ug/l	1/30	r	ND	IND	UND	UND	ND	ND	лD	UND	ND	UND	UND	IND	ND	ND	IND	עאי	עא	ND.
1,4-Dioxane	ug/l	1	N	ND	ND	2.5	2	ND	ND												
Perchlorate	ug/1 ug/1	6	P	ND	ND	0.56	0.55	ND	ND												
					i															ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND														

Page 23 of 34

General MicrobieFig.Fi	Constituents			ype					Montel	bello #1				
Adalagymay<		Units	MCL	MCL Type										
Joon Sum joon T j <					000	000	570	570	190	220	190	190	200	100
Bicebane Bicebane Bicebane Bicebane Space														
Boam mol 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								-						
Calue fraid mg1 i 13 13 13 17 90 96 96 91 17 63 Case Dack mg1 6 8 1 1 15 75 75 Case Same mg1 20 1 13 13 13 14 N07 79 85 15 </td <td></td> <td></td> <td>1</td> <td>Ν</td> <td></td>			1	Ν										
Cache Books mg1 I <	Bromide					4000	820	780	210	180	240	200	190	160
Cambra and Call and C	Calcium, Total	mg/l			13	13	17	17		96	95	91	77	80
Calon Som meV1 a 1 33 34 14 17 75 75 87 16 15 75 87 97 83 87	Carbon Dioxide	mg/l			-									
Charde mpl Stor Y <th< td=""><td></td><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		· ·												
Finanda mg2 2 7 0,17 0,17 0,17 0,21 0,2		· ·												
njeverske over, Calendard vergen verg														
Link matrix matrix <td></td> <td>· ·</td> <td>2</td> <td>Р</td> <td></td>		· ·	2	Р										
Nime (a NN) mp1 45 <i>i</i> ND ND														
Nome as Nongen mp1 10 r ND			45	р									-	
Nome Nome Nome ND <														
Datastan, Teal mp1 2 7 7.3 5.1 5.3 5.3 5.7 5.7 5.2 5.4 6.1 6.2 Sinfar mp1 500 1 ND ND ND ND 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Schlam, Tadl mg1 780 7			-	-	7									
Tad Davings, Names, Name, and J. 100 No No ND	Sodium, Total				780	740	300	280	43	43	59	54	61	62
Tad Dawlersk Sind (TDS) mg2 100 8 200 800 570 400 470 500 M30 ND	,	· ·	500	S										
General Floyical Properties i I I I I I I Mon ND ND ND ND ND Iardness (Col), ac(CO) mg1 5 5 70 71 71 280 100 300 280 280 280 Iardness (Col), ac(Col), mg1 5 2 2 2 3 2 100 300 280 280 280 Specific Conductor mbox 100 7 2 2 2 2 2 0 300 200 100 70	Total Dissolved Solid (TDS)				2200	2100	860	870	460		500	480	460	460
Apparent Color ACU 15 400 900 180 ND		mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	3.5	3.1
Hacksor (Tool, at CKCO) ung1 56 56 71 71 280 300 300 280 280 200 Langelf Index - 5 degre Nos I 1 0.80 0.9 0.33 0.77 0.79 8.8 7.7 7.7 Langelf Index - 5 degre Nos I I 1 0.80 0.97 0.77 0.79 0.81 0.56 0.43 Cond IC construction NO														
Lab pl Umas No. 8.3 8.3 8.3 8.1 7.8 7.9 8 7.71 7.7 7.7 Langelar Index - Supex TON 3 \$ 2 2 3 0.93 0.77 0.79 0.81 0.56 0.44 Specific Conductiones antice of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of the transmit of transmit			15	S										
Langler Index - 25 degree None I														
Oxing TON 3 2 2 3 2 ND 1 ND 2 ND Specific Conductors mikel (Ho0 8 500 3.600 3.600 1.600 1.00 ND					8.3	8.3								
Specific Conductance Imbidity No 5 6 0.78 1.3 0.37 0.39 0.6 0.24 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.11 0.17 0.45 0.11 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.17 0.45 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 0.13 0.16 0.15 0.2 0.20 0.30 0.42 0.10 ND	5				1	1								
Techning NTU 5 0.78 1.3 0.37 0.39 0.6 0.24 0.17 0.17 0.43 0.13 Ataminov, Total ug1 100 P ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>											-			
Veta Imamu, Total up Imam, Total Imam, Total Up< Imam, Total Up<														
Aluminary, Total upp [00] P ND		NTU	5	S	0.78	1.3	0.37	0.39	0.6	0.24	0.17	0.17	0.45	0.13
Attimony, Total uppl 0 P ND		/1	1000	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Asenic, Total upp 100 P 5.6 4.7 ND ND ND ND 2.2 1.9 1.6 1.5 Barium, Total upj 4 P ND				_										
Bariam, Total ugil 100 r 37 37 23 24 40 43 88 89 67 60 Cadmiam, Total ugil 5 P ND ND <td< td=""><td></td><td>, i</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		, i		-										
Berylinn, Total ugil 4 r ND														
Cadmium, Total ugil 5 P ND		, i												
Chronium, Tutal ugil 50 P 1.3 1.6 ND														
Itexavalant Chronium (Cr VI) ug1 100 0.34 0.19 0.27 0.085 0.13 ND	,	· ·												
Copper, Total ug1 1300 P ND	,		50	1										
Ion. Total mg1 0.3 s 0.16 0.15 0.2 0.037 0.042 ND ND<			1300	Р										-
				S										
Manganes, Total ug/l 2 8.9 8.5 2.9 2.9 80 82 4.8 4.9 ND ND Nickel, Total ug/l 100 P ND	Lead, Total		15	Р	ND		ND	ND	ND	ND	ND	ND	ND	ND
Mercury ug1 10 P ND ND <t< td=""><td>Magnesium, Total</td><td>None</td><td></td><td></td><td>5.8</td><td>5.7</td><td>7</td><td>7</td><td>14</td><td>15</td><td>15</td><td>14</td><td>15</td><td>14</td></t<>	Magnesium, Total	None			5.8	5.7	7	7	14	15	15	14	15	14
Nickel, Total ug/l 100 P ND	Manganese, Total	ug/l	50	S	8.9	8.5	29	29	80	82	48	49	ND	ND
Selenium, Total ug/l 100 r 7.9 ND ND <td>Mercury</td> <td>ug/l</td> <td>2</td> <td>Р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>	Mercury	ug/l	2	Р										ND
Silver, Total ug/l 100 N ND														
Thallim, Total ug/l 2 P ND ND ND ND ND ND ND ND ND ND ND ND ND		, i			-									
Zinc, Totalug/l5000sNDNDNDNDNDNDNDNDNDNDNDNDVolatile Organic Compounds<														
Volatile Organic Compounds 0 </td <td>,</td> <td></td> <td></td> <td>-</td> <td></td>	,			-										
11-Dickloroethane ug/l 5 p ND		ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichlorochylene $ug'l$ 6PND<			5	n	NID	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane ug/l 0.5 P ND ND </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-										
Benzeneug/l1PND														
Carbon Tetrachloride ug/l 0.5 P ND ND<			1											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.5											
cis-1,2-Dichloroethylene ug/l 6 P ND N														
Di-Isopropyl Ether ug/l ND ND <td></td> <td></td> <td>6</td> <td>Р</td> <td></td>			6	Р										
Ethyl Tert Butyl Etherug/lND <td>Di-Isopropyl Ether</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td></td> <td></td>	Di-Isopropyl Ether							ND			ND	ND		
Freen 11 ug/l 150 P ND			300	Р										
Freen 113 ug/l 1200 P ND		, i												
Methylene Chlorideug/l5PND				_										
MTBE ug/l 13 P ND														
Styrene ug/l 100 P ND														
Tert Amyl Methyl Etheiug/lNDNDNDNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5PND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Tetrachloroethylene (PCE) ug/l 5 P ND			100	Р										
Toluene ug/l 150 P ND			E											
Total Trihalomethanes ug/l 80 P ND ND<														
trans-1,2-Dichloroethylene ug/l 10 P ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Trichloroethylene (TČE) ug/l 5 P ND														
Vinyl chloride (VC) ug/l 0.5 P ND ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Xylenes (Total) ug/l 1750 P ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Others Image: Construct of the state of the														
1,4-Dioxane ug/l 1 N ND ND ND ND 4.4 5.4 3.5 5.3 ND ND Perchlorate ug/l 6 P ND ND ND ND ND ND ND 0.69 Surfactants mg/l 0.5 s ND		ug/1	1750	r	нD	nD	110	110	110	110	110	110	110	11D
Perchlorate ug/l 6 P ND ND ND ND ND ND ND 0.94 0.69 Surfactants mg/l 0.5 s ND		110/l	1	N	ND	ND	ND	ND	4.4	5.4	3.5	53	ND	ND
Surfactants mg/l 0.5 s ND			6											
	Total Organic Carbon	mg/l	1		20	33	14	23	0.64	0.52	0.55	0.45	0.44	0.4

Page 24 of 34

Constitution of the			ype			Norwalk #1		
Constituents	Units	MCL	MCL Type	Zone 1 4/21/2020	Zone 2 4/21/2020	Zone 3 4/21/2020	Zone 4 4/21/2020	Zone 5 4/21/2020
General Minerals								
Alkalinity	mg/l			280	180	150	130	200
Anion Sum Bicarbonate as HCO3	meq/l			8.1 340	5.2	5.5	3.5	8.4 240
Boron	mg/l mg/l	1	Ν	0.36	0.18	0.058	ND	0.072
Bromide	ug/l	1	19	290	280	450	150	730
Calcium, Total	mg/l			12	8.8	36	29	70
Carbon Dioxide	mg/l			2.8	ND	ND	ND	3.9
Carbonate as CO3	mg/l			4.4	5.4	2.3	ND	ND
Cation Sum	meq/l			7.4	4.7	5.2	3.4	7.6
Chloride	mg/l	500		63	58	85	25	150
Fluoride	mg/l	2	Р	0.5	0.58	0.24	0.32	0.28
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND
Iodide	ug/l	1.5		82	99	120	34	110
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l	10	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Potassium, Total	mg/l	1	Р	2.1	ND	2.2	ND 1.4	3.2
Sodium, Total	mg/l mg/l			140	95	70	34	62
Sulfate	mg/l	500	S	33	95 ND	5.5	6.5	6.6
Total Dissolved Solid (TDS)	mg/l	1000		460	290	320	200	500
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	ND	ND	ND
General Physical Properties			-		1.12	1.0		
Apparent Color	ACU	15	S	20	30	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			53	27	100	94	240
Lab pH	Units			8.3	8.6	8.3	8.2	8
Langelier Index - 25 degree	None			0.47	0.38	0.63	0.36	0.75
Odor	TON	3	S	200	2	1	2	8
Specific Conductance	amho/cn	1600	S	770	520	560	340	840
Turbidity	NTU	5	S	0.15	0.4	0.23	0.25	18
Metals								
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	ND	ND	5.4	16	11
Barium, Total	ug/l	1000		12	7.2	130	120	380
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	1200	n	0.14	0.046	ND	ND	ND
Copper, Total Iron, Total	ug/l	1300 0.3		ND ND	ND ND	ND 0.034	ND 0.025	ND 0.13
Lead, Total	mg/l ug/l	15	S P	ND	ND	ND	ND	ND
Magnesium, Total	None	15	I	5.6	1.2	3.3	5.2	16
Manganese, Total	ug/l	50	S	2.4	6.9	26	36	150
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND
Volatile Organic Compounds								
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	4.6
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l ug/l	6	Р	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500	1	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND
Styrene	ug/l	100	Р	ND	ND	ND	ND	ND
Fert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND
Foluene	ug/l	150	Р	ND	ND	ND	ND	ND
Fotal Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND
rans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND
Others								
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	0.29
Total Organic Carbon	mg/l			2.1	2.6	0.55	0.4	1.6

Page 25 of 34

Constituents			ype						Norw	alk #2					
Constituents	Units	MCL	MCL Type	Zor 4/28/2020	ne 1 9/23/2020	Zor 4/28/2020	ne 2 9/23/2020	Zor 4/28/2020	ne 3 9/23/2020	Zor 4/28/2020	ne 4 9/23/2020	Zor 4/28/2020	ne 5 9/23/2020	Zor 4/28/2020	ne 6 9/23/2020
General Minerals		,	_												
Alkalinity	mg/l			190	190	180	190	150	150	160	160	160	160	180	180
Anion Sum	meq/l			7.2	7.1	5	5.2	4.3	4.4	5.9	5.9	7.8	8.2	7.5	7.6
Bicarbonate as HCO3	mg/l			230	240	220	230	180	180	200	200	190	200	220	210
Boron	mg/l	1	Ν	0.25	0.24	0.22	0.21	ND	ND 49	0.052	ND 76	0.16	0.17	0.17	0.16
Bromide Calaium Tatal	ug/l			280 34	310 21	150	160 13	46 45	48 45	72 69	68	150 80	160	120	130 72
Calcium, Total Carbon Dioxide	mg/l mg/l			2.4	2.5	13 ND	ND	45 ND	45 ND	3.3	3.3	3.9	78	73 5.7	5.4
Carbonate as CO3	mg/l			2.4	2.5	3.6	3.8	ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			6.9	6.4	4.8	4.8	4.3	4.2	5.8	5.7	7.7	7.8	7.4	7.2
Chloride	mg/l	500	S	69	72	35	39	14	16	30	32	75	83	57	63
Fluoride	mg/l	2	Р	0.34	0.35	0.45	0.42	0.19	0.19	0.28	0.26	0.26	0.25	0.38	0.35
Hydroxide as OH, Calculated	mg/l			ND	ND										
Iodide	ug/l			88	95	46	57	9.6	8	ND	ND	5.8	5.5	ND	ND
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	6.2	6.3	11	12	9	9.4
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	1.4	1.4	2.5	2.8	2	2.1
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND										
Potassium, Total	mg/l			3.5	3.6	2.3	2.4	2.5	2.4	3.2	3.2	4.1	4.2	3.8	3.7
Sodium, Total	mg/l	500	_	110	110	88	89	36	35	31	30	54	57	55	54
Sulfate	mg/l	500	S	68	57	15	16	42	44	77	78	110	120	100	100
Total Dissolved Solid (TDS)	mg/l	1000	S P	420 ND	390 ND	290 ND	290 ND	260 ND	250 ND	360 1.4	340 1.4	480 2.5	470 2.8	450 2	440 2.1
Total Nitrogen, Nitrate+Nitrite General Physical Properties	mg/l	10	P	ND	ND	ND	ND	ND	ND	1.4	1.4	2.5	2.0	2	2.1
Apparent Color	ACU	15	S	ND	ND	5	15	5	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	15	3	110	69	42	43	130	130	220	220	260	260	240	240
Lab pH	Units			8.2	8.2	8.4	8.4	8.2	8.2	8	8	7.9	8	7.8	7.8
Langelier Index - 25 degree	None			0.6	0.42	0.4	0.44	0.71	0.66	0.73	0.66	0.64	0.78	0.54	0.59
Odor	TON	3	S	ND	2	2	ND	1	ND	ND	ND	2	ND	1	ND
Specific Conductance	umho/cm	1600	S	700	670	480	500	400	420	550	560	740	750	710	720
Turbidity	NTU	5	S	0.15	0.15	0.1	0.19	ND	0.18	ND	0.16	ND	0.32	0.12	0.19
Metals															
Aluminum, Total	ug/l	1000	Р	ND	ND										
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	3.2	3.7	ND	ND	ND	ND	1.9	2.1	2	2	1.4	1.4
Barium, Total	ug/l	1000	Р	37	30	12	12	30	31	150	170	68	71	48	54
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	3.1	3.8	ND	3.6	1	4.3
Hexavalent Chromium (Cr VI)	ug/l	1200		0.031	ND	0.028	ND	0.02	ND	3.2	3.1	0.96	0.86	0.98	0.94
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7	ND	ND
Iron, Total	mg/l	0.3	S	ND ND	ND ND										
Lead, Total Magnesium, Total	ug/l None	15	Р	6.5	4	2.4	2.5	5.2	5.2	11	11	16	15	15	15
Manganese, Total	ug/l	50	S	10	7.4	17	18	20	19	ND	ND	ND	ND	ND	ND
Mercury	ug/1	2	P	ND	ND										
Nickel, Total	ug/1	100	P	ND	ND										
Selenium, Total	ug/l	50	Р	ND	ND										
Silver, Total	ug/l	100	S	ND	ND										
Thallium, Total	ug/l	2	Р	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND										
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	Р	ND	ND										
1,1-Dichloroethylene	ug/l	6	Р	ND	ND										
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Benzene Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND
Chlorobenzene	ug/l	70	P	ND	ND										
Chloromethane (Methyl Chloride)	ug/l	70	r	ND	ND										
cis-1,2-Dichloroethylene	ug/1 ug/1	6	Р	ND	ND										
Di-Isopropyl Ether	ug/l		Ė	ND	ND										
Ethylbenzene	ug/1	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l			ND	ND										
Freon 11	ug/l	150	Р	ND	ND										
Freon 113	ug/l	1200	Р	ND	ND										
Methylene Chloride	ug/l	5	Р	ND	ND										
MTBE	ug/l	13	Р	ND	ND										
Styrene	ug/l	100	Р	ND	ND										
Tert Amyl Methyl Ether	ug/l	_		ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	0.83	0.56	ND	ND	ND	ND
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	Р	ND	ND										
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND										
Trichloroethylene (TCE)	ug/l	5	P	ND	ND										
Vinyl chloride (VC) Xylenes (Total)	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes (Total) Others	ug/l	1750	Р	IND	IND	IND	IND	ND	ND	IND	ND	IND	ND	IND	ND
Others 1,4-Dioxane	110/1	1	N.	ND	ND	ND	ND	ND	ND	ND	ND	2.9	2.7	ND	ND
Perchlorate	ug/l ug/l	6	N P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.8	2.2	0.75	0.73	ND ND	0.73
Surfactants	mg/l	0.5	P S	ND	ND	ND	ND	ND	ND	1.8 ND	ND	0.75 ND	0.73 ND	ND	0.73 ND
Total Organic Carbon	mg/l mg/l	0.5	3	1.4	1.7	1.2	ND 1.4	0.34	0.54	ND	0.27	0.4	0.54	0.4	0.48
rotar Organic Carbon	mg/1		I	1.7	1./	1.2	1.4	0.34	0.34	ND	0.27	0.4	0.54	0.4	0.40

Page 26 of 34

			pe				Pico #1			
Constituents	Units	MCL	MCL Type	Zone 1 4/28/2020	Zor 4/28/2020	ne 2 9/22/2020	Zo 4/28/2020	ne 3 9/22/2020	Zo 4/28/2020	ne 4 9/22/2020
General Minerals	-	F	~	1/20/2020	1/20/2020	<i>JI2212020</i>	1/20/2020	572272020	1/20/2020	<i>JIEE/2020</i>
Alkalinity	mg/l			300	160	160	200	200	190	200
Anion Sum	meq/l			6.1	4.8	5	9.6	9.9	9.7	10
Bicarbonate as HCO3	mg/l	1		360	190	190	240	240	230	250
Boron Bromide	mg/l ug/l	1	Ν	0.62	0.063 46	0.055	0.11 180	0.1 190	0.24 190	0.23 200
Calcium, Total	mg/l			8.7	61	63	120	130	87	94
Carbon Dioxide	mg/l			3	3.9	4.9	7.8	7.8	9.5	8.2
Carbonate as CO3	mg/l			4.7	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			5.6	4.9	5.1	9.5	9.6	9.4	10
Chloride	mg/l	500	S	2.9	14	17	85	92	100	110
Fluoride	mg/l	2	Р	0.26	0.27	0.27	0.3	0.3	0.28	0.29
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l	15	-	7.7	3.5	3.4	13	12	ND	ND
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	14 3.2	14 3.2
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3.6	2.5	2.7	4.2	4.3	5	5.4
Sodium, Total	mg/l			110	21	22	41	41	83	87
Sulfate	mg/l	500	S	ND	58	64	150	160	130	140
Total Dissolved Solid (TDS)	mg/l	1000	S	350	290	280	570	570	570	580
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	3.2	3.2
General Physical Properties										
Apparent Color	ACU ma/l	15	S	45	5	ND 200	15	ND 280	ND 280	ND 210
Hardness (Total, as CaCO3)	mg/l Units			34 8.3	190 7.9	200 7.8	380	380	280 7.6	310 7.7
Lab pH Langelier Index - 25 degree	Units None			0.34	0.56	0.46	0.75	0.72	0.49	0.59
Odor	TON	3	S	2	0.56	0.46 ND	0.75	0.72 ND	0.49 ND	0.39 ND
Specific Conductance	umho/cm	1600		550	450	480	880	910	920	980
Turbidity	NTU	5	S	11	1.5	2.1	5.2	3.9	ND	0.29
Metals										
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	5.6	ND	ND	ND	ND	2.5	2.5
Barium, Total	ug/l	1000		16	76	85	85	91	58	64
Beryllium, Total Cadmium, Total	ug/l	4	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chromium, Total	ug/l ug/l	50	P P	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	50	I	0.033	ND	ND	ND	ND	0.75	0.7
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.075	0.27	0.28	0.5	0.51	ND	ND
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None			3	10	11	20	20	16	18
Manganese, Total	ug/l	50	S	33	20	20	16	15	ND	ND
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total Silver, Total	ug/l ug/l	50 100	P S	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	0									
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5		ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloromethana (Methyl Chlorida)	ug/l	70	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l ug/l	6	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-Isopropyl Ether	ug/l	0	r	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500	<u> </u>	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	Р	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	-		ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE) Toluene	ug/l	5 150	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total Trihalomethanes	ug/l ug/l	80	P	ND	ND ND	ND	ND	ND	ND	ND ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/1 ug/1	5	P	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/1	1750		ND	ND	ND	ND	ND	ND	ND
Others	- T									
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	0.62
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	1	1	3.2	ND	0.44	0.37	0.54	0.45	0.68

Page 27 of 34

Constituents			ype						Pice	o #2					
Constituents	Units	MCL	MCL Type	Zor 4/16/2020	ne 1 9/22/2020	Zor 4/16/2020	ne 2 9/22/2020	Zor 4/16/2020	ne 3 9/22/2020	Zor 4/16/2020	ne 4 9/22/2020	Zor 4/16/2020	ne 5 9/22/2020	Zor 4/16/2020	ne 6 9/22/2020
General Minerals															
Alkalinity	mg/l			200	200	210	200	190	190	150	150	110	130	91	78
Anion Sum	meq/l			8.8	8.9	10	10	9	9.1	8.9	9.2	6	7.5	4.2	3.8
Bicarbonate as HCO3	mg/l	1		250	250	250	250	240	230	180	180	130	160	110 0.092	95
Boron Bromide	mg/l	1	N	0.056	ND 180	0.15 200	0.14 200	0.16	0.15	0.25	0.25	0.19	0.22	60	0.084
Calcium, Total	ug/l mg/l			120	120	120	120	1/0	100	73	74	37	51	22	22
Carbon Dioxide	mg/l			5.2	6.5	4.1	6.5	3.9	6	7.4	7.4	6.7	6.6	5.7	4.9
Carbonate as CO3	mg/l			ND	ND										
Cation Sum	meq/l			8.8	8.8	10	10	8.9	8.9	8.7	8.8	5.7	7.2	4.1	3.8
Chloride	mg/l	500	S	60	65	98	100	83	88	120	130	77	100	46	43
Fluoride	mg/l	2	Р	0.23	0.23	0.26	0.25	0.34	0.28	0.28	0.3	0.33	0.36	0.38	0.36
Hydroxide as OH, Calculated	mg/l			ND	ND										
Iodide	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	2.5	2.2	ND	ND
Nitrate (as NO3)	mg/l	45	Р	14	14	13	13	14	15	24	25	11	16	6.2	8
Nitrate as Nitrogen	mg/l	10	Р	3.1	3.2	2.9	3	3.2	3.4	5.4	5.7	2.6	3.7	1.4	1.8
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND										
Potassium, Total	mg/l			3.5 25	3.8	3.9 42	4.1 42	4.2 46	4.4 47	4.4	4.6 86	4.1 65	4.8 79	5.1	5.2 47
Sodium, Total	mg/l	500	0		130									53 46	47
Sulfate Total Dissolved Solid (TDS)	mg/l mg/l	500 1000	S S	130 520	500	140 590	140 580	120 530	120 520	100 540	110 520	68 380	86 430	260	230
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	3.1	3.2	2.9	3	3.2	3.4	5.4	5.7	2.6	3.7	1.4	1.8
General Physical Properties	ing/1	10		5.1	5.2	2.7	5	5.2	5.7	5.7	5.1	2.0	5.1	1.7	1.0
Apparent Color	ACU	15	S	ND	ND	3	ND								
Hardness (Total, as CaCO3)	mg/l			380	390	400	400	330	330	250	250	130	180	82	82
Lab pH	Units			7.9	7.8	8	7.8	8	7.8	7.6	7.6	7.5	7.6	7.5	7.5
Langelier Index - 25 degree	None			0.9	0.85	1	0.87	0.93	0.7	0.28	0.33	-0.22	0.057	-0.53	-0.58
Odor	TON	3	S	1	ND										
Specific Conductance	umho/cm	1600	s	800	810	960	940	870	840	910	880	590	730	420	390
Turbidity	NTU	5	S	0.16	0.25	0.17	0.26	0.17	0.34	0.17	0.27	0.17	0.24	0.46	0.74
Metals															
Aluminum, Total	ug/l	1000	Р	ND	ND										
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	1.4	1.4	2	1.9	1.5	1.6	2.1	2.3	ND	ND	11	9.6
Barium, Total	ug/l	1000	Р	110	110	96	100	92	93	75	77	67	84	67	63
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total	ug/l	50	Р	1.1	ND	1.1	1.1	1.2	1.3	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			1.3	1.1	0.98	0.82	1.4	1.2	0.71	0.38	0.76	0.45	0.32	0.22
Copper, Total	ug/l	1300	Р	ND	ND	2.3	ND								
Iron, Total	mg/l	0.3	S	ND ND	ND ND										
Lead, Total Magnesium, Total	ug/l None	15	Р	20	21	24	24	20	20	16	ND 16	ND 10	ND 14	6.5	6.6
Manganese, Total	ug/l	50	S	20 ND	ND	ND	ND	ND	ND	ND	ND	32	28	ND	ND
Mercury	ug/1	2	P	ND	ND										
Nickel, Total	ug/1	100	P	ND	ND										
Selenium, Total	ug/l	50	Р	ND	ND										
Silver, Total	ug/l	100	S	ND	ND										
Thallium, Total	ug/l	2	Р	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND										
Volatile Organic Compounds															
1,1-Dichloroethane	ug/l	5	Р	ND	ND										
1,1-Dichloroethylene	ug/l	6	Р	ND	ND										
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND										
Benzene	ug/l	1	Р	ND	ND										
Carbon Tetrachloride	ug/l	0.5	P	ND	ND										
Chlorobenzene Chloromethana (Methyl Chlorida)	ug/l	70	Р	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l	6	Р	ND ND	ND ND										
Di-Isopropyl Ether	ug/l ug/l	6	Р	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l	500	1°	ND	ND										
Freon 11	ug/l	150	Р	ND	ND										
Freon 113	ug/l	1200		ND	ND										
Methylene Chloride	ug/1	5	P	ND	ND										
MTBE	ug/l	13	Р	ND	ND										
Styrene	ug/l	100	Р	ND	ND										
Tert Amyl Methyl Ether	ug/l			ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	0.69	0.66	0.62	0.66	1.7	1.7	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	Р	ND	ND	0.54	0.56	0.67	0.7	4.8	3.4	ND	0.54	1.5	2.2
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND										
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND										
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND										
Xylenes (Total)	ug/l	1750	Р	ND	ND										
Others															
1,4-Dioxane	ug/l	1	Ν	2.9	2.8	ND	ND	1.3	1.2	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	1.6	1.6	0.61	0.61	1	0.93	ND	ND	ND	ND	0.71	0.65
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.70	ND	ND
Total Organic Carbon	mg/l		I	0.31	0.28	ND	0.33	ND	0.28	0.4	0.5	0.6	0.78	0.97	0.65

Page 28 of 34

General Mainela mel i<		be							Rio Ho	ndo #1					
Cacaca Minorah mol	Constituents		Jnits	Zon 3/25/2020									n	Zor 3/25/2020	ne 6 9/8/2020
Atom Sim energy 1 4 4 4 6 9 5 75 8.0 75 8.0 75 8.0 75 8.0 75 8.0 75 8.0 75 8.0 75		E , <u>E</u> , <u>512512</u>	-	512512020	7/0/2020	512512020	7/0/2020	512512020	7/0/2020	5/25/2020	7/0/2020	5/25/2020	710/2020	512512020	7/0/2020
Biashasa aHCO3 mpl 2 1 100 180 200 300 220 230 140 140 140 140 140 140 140 140 141 150 140 140 141 150 140 140 141 150 140 140 140 140 140 140 140 140 140 14	y n		mg/l		140	170	160	180	190		110	120	110	100	100
Boom mp1 1 N 0.000 0.005 ND 0.16 0.13 0.14 0.11 0.15 0.14 0.11 0.15 0.14 0.11 0.15 0.10 0.15 0.15 0.16 0.10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.4</td>															3.4
Bernske up1 2 97 98 140 150 160 150 150 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>120</td>								-		-					120
Caloim, Total ngl 4 42 40 91 46 43 54 47 72 Carbon Doxido mgl ND N					0.000					-			-		0.11
Cahon Boosle ng1 ND 32 33 4,1 36 6 20 46 4,6 5.8 48 Cabox Sum meq.1 ND N			~				-								43
Carboatte at CO3 ngl ND	,		e e												4.9
Calon Sam men P I 4.6 4.4 7 6.8 8.3 8.1 5.4 5.3 5.9 5.4 5.3 Clanck mg1 2 0.35 0.05 0.13 0.28 0.23 0.23 0.21 0.11 0.13 0.13 0.28 0.23 0.23 0.21 0.13 0.13 0.28 0.23 0.23 0.23 0.23 0.21 0.23 0.13 0.28 0.23															ND
Chorde ng1 20 7 7 43 42 67 72 53 44 67 58 28 Flavinke avitt, Calculated ng1 ND			÷												3.4
Hydroxides av Off, Calculated mp1 ND						43									18
Jakida ugi 1 23 36 4.6 9.2 ND <				0.26	0.25	0.22	0.21	0.3	0.28	0.34	0.33	0.28		0.39	0.39
Name Nome mag 1 i i ND N	de as OH, Calculated n	ND	mg/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ninta: a Ninogén mpi 10 N D0	τ		ug/l										ND	ND	ND
Ninrigen mip I P ND ND <t< td=""><td>/</td><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.8</td></t<>	/		÷												6.8
Picase mg1 2.5 2.8 3.1 3.3 3.7 4 3.1 3.2 3.3 3.4 2.9 Sulfas mg1 0.4 0.4 3.9 2.6 2.5 4.8 4.8 5.2 4.8 4.8 5.2 4.9 5.1 4.9 4.1 Gal Statuse 0.60 7.7 1.6 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 6.7 7.1 7.7 <t< td=""><td>÷</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.5</td></t<>	÷		0												1.5
Solum. Total mg1 i 40 39 26 23 48 48 52 49 51 49 44 Total Disoched Sulid (TDS) mg1 100 8 270 280 410 410 100 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 71 67 70 80 70 80 70 </td <td>·</td> <td></td> <td>÷</td> <td></td> <td>ND</td>	·		÷												ND
Salifac mg1 500 s 47 46 110 110 100 67 71 67 42 Toal Disoles (M178) mg1 100 r ND ND ND ND 22 1.8 1.6 3.01 2.6 2.6 General Prysical Propertie -	/		ç												2.9
Total Disolved Solid (TDS) mg/l 100 % S 270 230 230 300 370 330 244 Total Mirosen, NintersWinite ND ND<			~												36
Total Ningen, Ningel Ningel, Ng ND			0		-	-	-		-						36 210
General Physical Properties C Image Imag			0											-	1.5
Apparent Color ACU 15 s ND	8 /	IU F ND	mg/1	ND	ND	ND IND	ND	2.1	2.2	1.0	1.0	3.1	2.0	2	1.5
Hardness (Total, as CaCO3) mg/l 140 130 290 280 300 290 150 140 180 160 100 LapgHir Index - 25 degree None 0.64 0.53 0.79 0.73 0.84 0.09 0.22 0.05 0.13 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.04 0.05 0.13 0.08 -0.05 0.13 0.08 -0.05 0.05<		15 s ND	ACU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
														100	89
Langleir Index - 25 degree None P 0.64 0.79 0.73 0.74 0.64 0.05 0.013 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.05	() -)			-							-			7.6	7.6
Odor TON 3 s 1 1 1 ND 2 ND 2 ND 1 ND 2 Specific Conducatione malor 160 640 640 780														-0.24	-0.33
Turbidity NTU S 0 0.32 0.42 0.33 0.16 0.34 0.13 0.18 0.33 0.49 0.55 Aturninony, Total ug1 1000 P ND N	Т	3 s 1	TON	1	1	1	ND	2	ND	2	ND	1	ND	2	ND
Netasí v <td>Conductance uml</td> <td>1600 s 420</td> <td>umho/cm</td> <td>420</td> <td></td> <td>640</td> <td></td> <td></td> <td></td> <td>520</td> <td></td> <td></td> <td></td> <td>390</td> <td>350</td>	Conductance uml	1600 s 420	umho/cm	420		640				520				390	350
Aluminam, Total ug1 6 ND	y N	5 s 0.51	NTU	0.51	0.32	0.4	0.3	0.16	0.34	0.13	0.18	0.35	0.49	0.51	0.44
Antimony_Total ug/l lo P ND															
Assenic, Total ug/l 100 P ND ND ND ND 21 2 2.5 2.4 1.6 1.4 1.3 Barium, Total ug/l 14 P ND	/		<u> </u>												ND
Barium, Total ug/l 14 P ND			÷												ND
Beryllum, Total ug1 4 P ND			÷												1.4
Cadmum, Total ug/l 5 P ND			<u> </u>								-				54
Chromum, Total ug/l 50 ND			÷												ND
Hexavlari Chromium (Cr VI) ug/l vol 0.17 ND 0.12 ND 0.7 0.65 0.71 0.58 0.77 0.64 0.88 Copper, Total ug/l 1300 P ND ND <td>/</td> <td></td> <td>÷</td> <td></td> <td>ND ND</td>	/		÷												ND ND
Copper, Total ug/l 1300 P ND	/		<u> </u>												0.69
Iron. Total mg/l 0.3 s ND			÷												0.09 ND
Lead, Total ug/l 15 P ND			0												ND
Magnesum, Total None 8.4 8 16 17 16 9 8.2 11 9.9 7.5 Marganese, Total ug/l 20 s 23 24 29 27 ND			ç												ND
			÷												6.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										-				ND	ND
Selenium, Total ug/l 50 P ND		2 P ND	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total ug/l 100 s ND	Fotal u	100 P ND	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Totalug/l2PND<	n, Total u	50 P ND	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total ug/l 5000 s ND	otal u		ug/l		ND	ND							ND	ND	ND
Volatile Organic Compounds 0 </td <td>/</td> <td></td> <td>÷</td> <td></td> <td>ND</td> <td>ND</td>	/		÷											ND	ND
I,1-Dichloroethaneug/l5PND		5000 s ND	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
I,1-Dichloroethyleneug/l6PND <t< td=""><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td>a</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	· ·						a								
1.2-Dichloroethane ug/l 0.5 P ND ND <td></td> <td></td> <td>÷</td> <td></td> <td>ND</td>			÷												ND
Benzene ug/l 1 P ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>															ND
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			÷		ND		ND	ND				ND	ND	ND	ND
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					ND		ND	ND				ND	ND	ND	ND ND
															ND
cis-1,2-Dichloroethylene ug/l 6 P ND N			0											ND	ND
Di-Isopropyl Etherug/lNDNDNDNDNDNDNDNDNDNDNDEthylbenzeneug/l300PND <td< td=""><td></td><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>ND</td></td<>			÷											ND	ND
Ethylbenzeneug/l300PNDNDNDNDNDNDNDNDNDNDNDNDEthylbenzeneug/l150PND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td>														ND	ND
Ethyl Tert Butyl Etherug/lNDNDNDNDNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDNDNDNDNDFreon 13ug/l5PNDNDNDNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDNDNDNDTert Anyl Methyl Etherug/l5PNDNDNDNDNDNDNDNDNDNDNDTotal Trialomethanesug/l150PNDNDNDNDNDNDNDNDNDNDNDNDTotal Trialomethanesug/l160PNDNDNDNDNDNDNDNDNDTrickloroethyleneug/l10PNDNDNDNDNDNDNDNDNDTotal Trialomethanesug/l80PND<														ND	ND
Freen 113ug/l1200PNDNDNDNDNDNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l100NDNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5PNDNDNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l150PNDNDNDNDNDNDNDNDNDNDNDTrichloroethyleneug/l10PNDNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDNDNDNDTrichloroethyleneug/l5PNDNDNDNDNDNDNDNDNDTrichloroethyleneug/l5PNDNDNDNDNDNDNDNDNDTrichloroethyleneug/l5PNDND<		ND												ND	ND
	ι													ND	ND
MTBE ug/l 13 P ND														ND	ND
Styrene ug/l 100 P ND			÷											ND	ND
Tert Amyl Methyl Ether ug/l ND N			÷											ND	ND
Tetrachloroethylene (PCE) ug/l 5 P ND														ND	ND
Toluene ug/l 150 P ND	· ·		÷												ND
Total Trihalomethanes ug/l 80 P ND ND ND ND ND 0.59 0.57 3 2.2 0.97 trans-1,2-Dichloroethylene ug/l 10 P ND	/		-												ND
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			÷												ND
Trichloroethylene (TČE) ug/l 5 P ND															ND
			÷												ND ND
Vinyl chloride (VC) ug/l 0.5 P ND ND ND ND ND ND ND ND ND ND ND ND ND			÷	ND	ND	ND ND	ND		ND	ND ND	ND	ND		ND ND	ND
			÷											ND	ND
Others	(1000)	1,50 I ND	ug/1	ND	11D	110	nD	нD	нD	110	110	110	110	110	ND
	ane		uo/1	ND	ND	4	4.3	1.2	1.1	ND	ND	ND	ND	ND	ND
														0.64	ND
ě l			0											ND	ND
														ND	0.32

Page 29 of 34

Constitution of the			ype						;	Seal Be	each #1	l					
Constituents	Units	MCL	MCL Type	Zoi 4/13/2020		Zor 4/13/2020		Zor 4/13/2020	ne 3 8/17/2020		ne 4 8/17/2020		ne 5 8/17/2020		ne 6 8/17/2020	Zor 4/13/2020	ne 7 8/17/2020
General Minerals	-	F	~	1/15/2020	0/1//2020	1/15/2020	0/1//2020	1/15/2020	0/1//2020	1/15/2020	0/1//2020	1/15/2020	0/1//2020	1/15/2020	0/1//2020	1/15/2020	0/1//2020
Alkalinity	mg/l			220	220	160	160	150	150	180	180	76	76	98	97	220	220
Anion Sum	meq/l			5	5	3.7	3.7	3.5	3.5	4.2	4.1	7.8	7.8	6.6	6.6	36	36
Bicarbonate as HCO3	mg/l			270	270	190	190	180	180	220	220	92	93	120	120	270	260
Boron	mg/l	1	N	0.23	0.24 180	0.14	0.14	0.19	0.19	0.23	0.22	0.06	0.061	0.15	0.16	0.2 3100	0.19 3300
Bromide Calcium, Total	ug/l			5.3	5.3	3.6	3.6	80 3.6	80 3.6	130 5.7	130 5.5	660 42	650 42	56	56	3100	300
Carbon Dioxide	mg/l mg/l			ND	ND	3.0 ND	3.0 ND	3.0 ND	3.0 ND	S.7 ND	S.S ND	42 ND	42 ND	D ND	ND ND	8.8	4.3
Carbonate as CO3	mg/l			11	8.8	112	9.8	12	9.3	7.2	7.2	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			5.1	4.7	3.5	3.5	3.3	3.3	4	3.9	7.6	7.2	6.3	6.5	34	33
Chloride	mg/l	500	S	17	17	15	14	14	13	18	17	200	200	68	68	870	900
Fluoride	mg/l	2	Р	0.4	0.4	0.5	0.51	0.58	0.55	0.75	0.71	0.29	0.28	0.36	0.34	0.3	0.28
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			55	47	28	21	21	17	40	30	7.6	7.9	11	8.2	210	180
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 8.1	ND
Potassium, Total Sodium, Total	mg/l			ND 110	ND 100	ND 76	ND 75	ND 71	ND 71	ND 85	ND 83	2 120	1.8 110	2 62	2 64	8.1 280	6.8 280
Sulfate	mg/l mg/l	500	S	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	36	35	130	130	320	280
Total Dissolved Solid (TDS)	mg/l	1000	S	270	320	220	240	200	220	250	260	440	470	390	430	2200	2300
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties			-														
Apparent Color	ACU	15	S	220	280	100	130	50	100	180	150	220	ND	ND	ND	5	ND
Hardness (Total, as CaCO3)	mg/l			15	15	10	10	9.8	9.8	17	16	120	120	180	180	1100	1000
Lab pH	Units			8.8	8.7	9	8.9	9	8.9	8.7	8.7	8.3	8.2	8.1	8.2	7.7	8
Langelier Index - 25 degree	None			0.46	0.46	0.42	0.33	0.35	0.3	0.38	0.31	0.4	0.39	0.49	0.57	1.2	1.4
Odor	TON	3	S	2	1	2	ND 240	2	1	2	2	2	ND	2	ND	2	ND
Specific Conductance	umho/cm	1600	S	480 0.49	450	340	340	340	340	400 0.97	380 0.54	850	800	660	630	3400	3200
Turbidity Metals	NTU	5	S	0.49	0.64	0.33	0.35	0.28	0.33	0.97	0.54	0.54	2.8	0.2	0.26	1.4	1.6
Aluminum, Total	ug/l	1000	Р	32	31	33	32	27	27	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.4	2.6
Barium, Total	ug/l	1000	Р	8	8.1	4.2	4.1	3.6	3.6	4.8	4.9	47	44	96	95	100	100
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	1.5	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.28	0.17	0.28	0.13	0.29	0.092	0.32	0.18	0.15	ND	0.12	ND	ND	ND
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.05 ND	0.046 ND	0.025	0.022 ND	0.029	ND ND	0.041 ND	0.036 ND	ND ND	ND ND	0.021	0.02 ND	0.25	0.26 ND
Lead, Total Magnesium, Total	ug/l None	15	Р	0.4	0.4	ND 0.31	0.31	ND 0.21	0.2	0.58	0.56	2.6	2.6	ND 9.6	9.8	ND 66	66
Manganese, Total	ug/l	50	S	6.5	6	3.8	3.7	2.4	2.2	7.8	7.4	2.0	2.0	9.0 86	9.8 87	800	770
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds																	
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Carbon Tetrachloride	ug/l ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	70	L.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE Styrene	ug/l	13 100	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tert Amyl Methyl Ethei	ug/l ug/l	100	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/1 ug/1	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others																	
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	ND	ND	ND	ND 2.0	ND 2.9	ND 2.9	ND	ND	ND	ND	ND 0.02	ND	ND	ND 0.5(
				11	8.2	4.6	3.9	3.8	3.8	6.6	6.8	ND	0.46	0.92	0.96	0.52	0.56

Page 30 of 34

Constituonto			ype					South (Gate #1				
Constituents	Units	MCL	MCL Type	Zor 4/20/2020	ne 1 9/24/2020	Zor 4/20/2020	ne 2 9/24/2020	Zor 4/20/2020	ne 3 9/24/2020	Zo: 4/20/2020	ne 4 9/24/2020	Zo 4/20/2020	ne 5 9/24/2020
General Minerals	_	_	F.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.20.2020	912112020	1.20.2020	<i>712</i> 112020	12012020	<i>)12</i> 112020	12012020	<i>312</i> 12020
Alkalinity	mg/l			170	170	140	140	150	160	170	170	210	210
Anion Sum	meq/l			5.1	5.1	6.4	6.6	6.5	6.7	7.4	7.6	9.2	9.6
Bicarbonate as HCO3	mg/l	1	N	200 0.11	200 0.096	170 0.14	170 0.13	190 0.12	190 0.11	210 0.16	210 0.15	250 0.13	250 0.12
Boron Bromide	mg/l ug/l	1	N	110	100	110	120	110	120	150	150	400	410
Calcium, Total	mg/l			49	49	68	66	72	73	76	77	92	96
Carbon Dioxide	mg/l			2.1	ND	2.2	2.8	3.9	2	4.3	3.4	5.2	4.1
Carbonate as CO3	mg/l			2	2.6	ND	ND	ND	2	ND	ND	ND	ND
Cation Sum	meq/l			5.1	5.1	6.6	6.4	6.6	6.7	7.2	7.4	8.8	9.2
Chloride	mg/l	500	S	21	22	52	57	45	49	55	61	94	100
Fluoride	mg/l	2	Р	0.3	0.3	0.31	0.32	0.37	0.38	0.38	0.38	0.42	0.42
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			25	30	11	11	ND	ND	ND	ND	110	100
Nitrate (as NO3)	mg/l	45	Р	ND	ND	9.6	9.7	9	9.2	6.6	7	ND	ND
Nitrate as Nitrogen	mg/l	10	P	ND ND	ND	2.2	2.2 ND	2	2.1	1.5	1.6	ND	ND
Nitrite, as Nitrogen Potassium, Total	mg/l	1	Р	2.1	ND 2.2	ND 2	ND 2.1	ND 2.6	ND 2.7	ND 2.9	ND 3.2	ND 2.6	ND 2.9
Sodium, Total	mg/l mg/l			44	44	3 48	3.1 47	40	41	50	51	50	53
Sulfate	mg/l	500	s	54	54	94	97	97	100	110	110	110	120
Total Dissolved Solid (TDS)	mg/l	1000	S	280	290	380	390	400	400	440	430	520	530
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	2.2	2.2	2	2.1	1.5	1.6	ND	ND
General Physical Properties								-					
Apparent Color	ACU	15	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	1		150	150	220	210	240	240	250	250	320	340
Lab pH	Units			8.2	8.3	8.1	8	7.9	8.2	7.9	8	7.9	8
Langelier Index - 25 degree	None			0.81	0.83	0.7	0.65	0.62	0.84	0.64	0.78	0.82	0.94
Odor	TON	3	S	1	1	1	ND	1	ND	1	ND	1	ND
Specific Conductance	umho/en		S	490	480	640	640	640	630	720	700	880	870
Turbidity	NTU	5	S	0.13	0.16	0.18	ND	ND	ND	0.14	0.11	0.46	0.5
Metals													
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	2.2	2	2.7	2.7	2.8	2.7	1.9	2	2.2	2
Barium, Total	ug/l	1000	Р	130	140	91	91	150	140	77	82	220	210
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	1.2	ND 0.50	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	1200		ND ND	ND	0.032	0.023	0.8	0.78	0.59 ND	0.52	ND ND	ND
Copper, Total Iron, Total	ug/l	1300 0.3	P S	0.029	ND 0.036	ND ND	ND ND	ND ND	ND ND	ND	ND ND	0.12	ND 0.12
Lead, Total	mg/l ug/l	15	P	0.029 ND	0.030 ND	ND	ND	ND	ND	ND	ND	ND	0.12 ND
Magnesium, Total	None	15	г	7.6	7.6	12	12	15	15	14	15	23	25
Manganese, Total	ug/l	50	S	38	40	3.2	3.1	ND	ND	ND	ND	110	110
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/1 ug/1	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		-	ND	ND	ND	ND	ND	ND	ND	ND 0.52	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	0.53	ND	ND
Di-Isopropyl Ether	ug/l	200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene Ethyl Tert Butyl Ether	ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11	ug/l ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	1200	P P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ľ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/1	5	Р	ND	ND	ND	ND	ND	ND	3.6	3.5	ND	ND
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/1 ug/1	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	1.2	1.1	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Others	Ĩ	1	1			1		l	1	l	1	1	l
1,4-Dioxane	ug/l	1	Ν	ND	ND	2	2	3.2	3.8	1.5	1.5	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	0.62	0.69	1.5	1.6	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			ND	0.36	ND	0.49	ND	0.37	ND	0.4	0.74	0.94

Page 31 of 34

Constituents			ype					Whitt	ier #1				
	Units	MCL	MCL Type	Zor 3/30/2020	ne 1 9/2/2020	Zor 3/30/2020	ne 2 9/2/2020	Zor 3/30/2020	ne 3 9/2/2020	Zor 3/30/2020	ne 4 9/2/2020	Zor 3/30/2020	ne 5 9/2/2020
General Minerals	/1			270	2(0	200	200	200	200	2(0	2(0	220	220
Alkalinity	mg/l			270 42	260	290 40	280 40	300 33	290 33	260 12	260 12	230	230
Anion Sum Bicarbonate as HCO3	meq/l mg/l			320	320	350	350	360	360	320	310	280	280
Boron	mg/l	1	N	0.84	0.87	0.92	0.94	0.7	0.71	0.19	0.19	0.15	0.15
Bromide	ug/l			1400	1300	1200	1200	1000	970	300	290	320	310
Calcium, Total	mg/l			190	200	180	190	180	190	79	80	80	81
Carbon Dioxide	mg/l			13	13	14	14	12	15	8.3	10	9.2	9.2
Carbonate as CO3	mg/l			ND									
Cation Sum	meq/l			38	39	37	37	31	31	12	11	11	11
Chloride	mg/l	500	S	290	280	250	240	220	220	81	82	87	88
Fluoride	mg/l	2	Р	0.29	0.27	0.3	0.28	0.46	0.43	0.2	0.18	0.32	0.29
Hydroxide as OH, Calculated	mg/l			ND									
Iodide	ug/l	45	_	230	230	210	220	170	180	99	110	2.3	1.6
Nitrate (as NO3)	mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	18	18	24 5.4	24 5.5
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P	ND	ND	ND	ND	ND	ND	4 ND	4 ND	ND	ND
Potassium, Total	mg/l	1	г	13	12	12	11	8.8	8.2	4.2	4.3	3.5	3.6
Sodium, Total	mg/l			410	420	390	400	300	300	120	100	86	86
Sulfate	mg/l	500	S	1400	1400	1300	1300	990	980	120	190	180	180
Total Dissolved Solid (TDS)	mg/l	1000	S	2700	2600	2500	2600	2100	2100	700	680	680	660
Total Nitrogen, Nitrate+Nitrite	mg/l	10	P	ND	ND	ND	ND	ND	ND	4	4	5.4	5.5
General Physical Properties													
Apparent Color	ACU	15	S	15	20	15	15	10	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			1000	1000	940	970	860	890	340	340	360	360
Lab pH	Units			7.6	7.6	7.6	7.6	7.7	7.6	7.8	7.7	7.7	7.7
Langelier Index - 25 degree	None			0.99	0.94	1	1	1.1	1	0.7	0.62	0.64	0.61
Odor	TON	3	S	1	1	2	1	1	2	1	ND	2	ND
Specific Conductance	umho/cn	1600	S	3400	3300	3200	3200	2800	2600	1000	1100	1100	1000
Turbidity	NTU	5	S	1.7	4.9	2.1	3.1	1.7	2.5	ND	0.12	ND	0.8
Metals													
Aluminum, Total	ug/l	1000	Р	ND									
Antimony, Total	ug/l	6	Р	ND									
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	ND	ND	1.4	1.3	ND	ND
Barium, Total	ug/l	1000	Р	18	17	17	17	24	24	32	32	27	27
Beryllium, Total	ug/l	4	Р	ND									
Cadmium, Total	ug/l	5	Р	ND ND	ND 3.6	ND 4.1							
Chromium, Total	ug/l	50	Р	0.022	ND	0.022	ND	0.033	ND	0.1	ND	3.0	3.6
Hexavalent Chromium (Cr VI)	ug/l	1300	Р	0.022 ND	ND	0.022 ND	ND	0.033 ND	ND	0.1 ND	ND	3.7 ND	3.0 ND
Copper, Total Iron, Total	ug/l mg/l	0.3	P S	0.55	0.58	0.44	0.45	0.36	0.37	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	0.43 ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	15		130	130	120	120	100	100	35	35	39	39
Manganese, Total	ug/l	50	S	51	48	70	66	79	76	23	22	2.4	3
Mercury	ug/l	2	P	ND									
Nickel, Total	ug/l	100	Р	ND									
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	12	11	17	17
Silver, Total	ug/l	100	S	ND									
Thallium, Total	ug/l	2	Р	ND									
Zinc, Total	ug/l	5000	S	ND									
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND									
1,1-Dichloroethylene	ug/l	6	Р	ND									
1,2-Dichloroethane	ug/l	0.5	Р	ND									
Benzene	ug/l	1	Р	ND									
Carbon Tetrachloride	ug/l	0.5	Р	ND									
Chlorobenzene Chloromothono (Mothyl Chlorida)	ug/l	70	Р	ND									
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l	6	D	ND ND									
Di-Isopropyl Ether	ug/l ug/l	6	Р	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND
Ethylbenzene	ug/l	300	Р	ND									
Ethyl Tert Butyl Ether	ug/l	500	1.	ND									
Freon 11	ug/l	150	Р	ND									
Freon 113	ug/1	1200	P	ND									
Methylene Chloride	ug/l	5	P	ND									
MTBE	ug/1	13	Р	ND									
Styrene	ug/l	100	Р	ND									
Tert Amyl Methyl Ether	ug/l			ND									
Tetrachloroethylene (PCE)	ug/l	5	Р	ND									
Toluene	ug/l	150	Р	ND									
Total Trihalomethanes	ug/l	80	Р	ND									
trans-1,2-Dichloroethylene	ug/l	10	Р	ND									
Trichloroethylene (TCE)	ug/l	5	Р	ND									
Vinyl chloride (VC)	ug/l	0.5	Р	ND									
Xylenes (Total)	ug/l	1750	Р	ND									
Others													
1,4-Dioxane	ug/l	1	Ν	ND									
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	1.4	1.3	2.4	2.6
Surfactants	mg/l	0.5	S	ND									
Total Organic Carbon	mg/l		L	1.9	2	2.4	2.5	1.9	1.9	ND	0.28	ND	0.26

Page 32 of 34

			'pe			Whit	tier #2		
Constituents	Units	MCL	MCL Type	Zone 1 4/30/2020	Zone 2 4/30/2020	Zone 3 4/30/2020	Zone 4 4/30/2020	Zone 5 4/30/2020	Zone 6 4/30/2020
General Minerals		4	2	4/30/2020	4/30/2020	4/30/2020	4/30/2020	4/30/2020	4/30/2020
Alkalinity	mg/l			220	160	210	400	220	350
Anion Sum	meq/l			12	4.2	13	27	11	17
Bicarbonate as HCO3	mg/l			270	190	260	480	270	430
Boron	mg/l	1	Ν	0.68	0.2	0.23	0.75	0.18	0.35
Bromide Calaium Tatal	ug/l			1300	140	620	920	340	300
Calcium, Total Carbon Dioxide	mg/l mg/l		_	38 4.4	23	88 4.3	120	4.4	150 8.9
Carbonate as CO3	mg/l			ND	2	ND	ND	ND	2.2
Cation Sum	meq/l			11	4	12	24	11	16
Chloride	mg/l	500	S	210	22	120	210	110	110
Fluoride	mg/l	2	Р	0.41	0.33	0.29	0.5	0.26	0.29
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Iodide	ug/l			320	34	20	ND	ND	ND
Nitrate (as NO3)	mg/l	45	Р	ND	ND	3.1	11	20	29
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	0.69	2.5	4.4	6.5
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			3.4	2	4.1	4.3	4.5	4.9
Sodium, Total	mg/l	500	-	180	56	110	270	75	120
Sulfate	mg/l	500	S	89	18	230 770	620	160	330
Total Dissolved Solid (TDS) Total Nitrogen, Nitrate+Nitrite	mg/l	1000	S P	700 ND	230 ND	0.69	1700 2.5	690 4.4	<u>1100</u> 6.5
General Physical Properties	mg/l	10	Р	ND	ND	0.09	2.3	4.4	0.3
Apparent Color	ACU	15	S	25	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l	15	3	170	73	370	620	360	530
Lab pH	Units			8	8.2	8	7.7	8	7.9
Langelier Index - 25 degree	None			0.6	0.42	0.91	1	1	1.2
Odor	TON	3	S	2	1	1	1	2	1.2
Specific Conductance	umho/cn	-		1300	410	1200	2400	1100	1600
Turbidity	NTU	5	S	6	ND	0.11	ND	ND	ND
Metals									
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	4.8	ND	ND	ND	ND	ND
Barium, Total	ug/l	1000	Р	20	25	52	13	77	31
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	3.1	ND	2.1	4.1
Hexavalent Chromium (Cr VI)	ug/l			ND	ND	3.4	0.21	2.1	4.3
Copper, Total	ug/l	1300	_	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	1.2	ND	ND	ND	ND	ND
Lead, Total	ug/l	15	Р	ND 18	ND 3.8	ND 36	ND 78	ND 22	ND 37
Magnesium, Total Manganese, Total	None ug/l	50	S	170	3.8	27	120	ND	ND
Manganese, Total Mercury	ug/1	2	P	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/1	100	P	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	5.6	ND	ND
Silver, Total	ug/1	100	S	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	, in the second se								
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		-	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether Ethylbenzene	ug/l	300	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene Ethyl Tert Butyl Ethei	ug/l ug/l	500	Р	ND	ND	ND	ND	ND ND	ND
Freon 11	ug/l	150	D	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/1	5	P	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		Ė	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	0.86
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	0.64	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others	-								
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	3	ND
Perchlorate	ug/l	6	Р	ND	ND	2	2.1	2.4	3.1
Surfactants Total Organic Carbon	mg/l	0.5	S	ND	ND	ND	ND	ND	ND
	mg/l	1	1	0.96	0.35	0.39	0.54	0.49	0.55

Page 33 of 34

			be				Whit	tier Narro	ws #1			
Constituents	Units	MCL	MCL Type	Zone 1 4/30/2020	Zone 2 4/30/2020	Zone 3 4/30/2020	Zone 4 4/30/2020	Zone 5 4/30/2020	Zone 6 4/30/2020	Zone 7 5/1/2020	Zone 8 5/1/2020	Zone 9 5/1/2020
General Minerals	C	2	Z	4/30/2020	4/30/2020	4/30/2020	4/30/2020	4/30/2020	4/30/2020	5/1/2020	5/1/2020	5/1/2020
Alkalinity	mg/l			94	110	140	160	150	160	170	170	150
Anion Sum	meq/l			21	3.1	7.6	8.9	8.3	8.9	8.6	8.3	7.1
Bicarbonate as HCO3	mg/l			110	130	170	200	180	200	210	210	180
Boron	mg/l	1	Ν	1.5	0.14	0.086	0.18	0.16	0.23	0.24	0.19	0.15
Bromide	ug/l											
Calcium, Total	mg/l			60	9.7	97	96	92	75	68	66	52
Carbon Dioxide	mg/l											
Carbonate as CO3	mg/l											
Cation Sum	meq/l	500	0			90						79
Chloride Fluoride	mg/l	500	S P	680 0.82	23 0.39	0.23	0.23	100 0.24	120 0.26	100 0.27	93 0.29	0.37
Hydroxide as OH, Calculated	mg/l	2	Р	0.82	0.39	0.23	0.23	0.24	0.26	0.27	0.29	0.57
Iodide	mg/l ug/l											
Nitrate (as NO3)	mg/l	45	Р	ND	ND	6.7	6.8	9.9	8.2	11	16	12
Nitrate as Nitrogen	mg/l	10	P	ND	ND	1.5	1.5	2.2	1.8	2.6	3.6	2.6
Nitrite, as Nitrogen	mg/l	10	P	ND	ND	ND	ND	ND	0.47	0.28	ND	ND
Potassium, Total	mg/l		-	3.4	1.2	2.8	4.4	4.4	5.1	5.2	5	6
Sodium, Total	mg/l			340	56	35	59	49	80	87	83	71
Sulfate	mg/l	500	S	ND	10	100	110	100	110	100	96	80
Total Dissolved Solid (TDS)	mg/l	1000		1300	190	470	530	490	540	520	480	420
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	1.5	1.5	2.2	2.3	2.9	3.6	2.6
General Physical Properties												
Apparent Color	ACU	15	S	200	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l											
Lab pH	Units			7.8	8.3	8.3	8.3	8.3	8.3	8.2	8.2	8.1
Langelier Index - 25 degree	None											
Odor	TON	3	S	2	1	1	2	1	2	1	1	1
Specific Conductance	umho/en	1600		2300	310	720	840	830	850	820	810	720
Turbidity	NTU	5	S	110	0.94	1.5	1.5	1.6	1.6	1.3	1.7	1.5
Metals		1000		N/D	2.0	N/D	N/D	ND	ND	N/D	ND	10
Aluminum, Total	ug/l	1000		ND	20 ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6 10	P	ND	ND 2	ND ND	ND 1.2	ND ND	ND	ND 1.8	ND 1.2	ND ND
Arsenic, Total	ug/l	1000	P P	6.6 480	2 23	150	1.2	220	1.1 120	1.8 94	1.2 70	70
Barium, Total Beryllium, Total	ug/l ug/l	4	P	480 ND	ND	ND	ND	ND	ND	94 ND	70 ND	ND
Cadmium, Total	ug/l	5	P	ND ND	ND							
Chromium, Total	ug/1 ug/1	50	P	1.4	2.7	5.6	4.7	5.4	5.5	4	4.2	6.4
Hexavalent Chromium (Cr VI)	ug/l	50										
Copper, Total	ug/l	1300	Р	ND ND	2.6							
Iron, Total	mg/l	0.3	S	10	0.043	0.028	ND	ND	0.021	0.024	ND	ND
Lead, Total	ug/l	15	Р	ND ND	ND							
Magnesium, Total	None			12	0.36	9.4	11	13	12	12	12	14
Manganese, Total	ug/l	50	S	610	14	ND	13	10	19	28	19	170
Mercury	ug/l	2	Р	ND ND	ND							
Nickel, Total	ug/l	100	Р	ND	ND	8.6	7.3	7.2	17	7.4	11	15
Selenium, Total	ug/l	50	Р	12	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND ND	ND							
Thallium, Total	ug/l	2	Р	ND ND	ND							
Zinc, Total	ug/l	5000	S	27	ND	21	ND	21	33	ND	21	ND
Volatile Organic Compounds		-										ND
1,1-Dichloroethane	ug/l	5	P	ND ND	ND							
1,1-Dichloroethylene	ug/l	6	P	ND ND ND ND	ND ND							
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND				ND	ND	ND
Carbon Tetrachloride	ug/l ug/l	0.5	P P	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND
Chlorobenzene	ug/l	70		ND ND	ND							
Chloromethane (Methyl Chloride)	ug/l	70	1	ND ND	ND							
cis-1,2-Dichloroethylene	ug/l	6	Р	ND ND	ND							
Di-Isopropyl Ether	ug/l	Ĕ	Ė	ND ND	ND							
Ethylbenzene	ug/1	300	Р	ND ND	ND							
Ethyl Tert Butyl Ether	ug/l			ND ND	ND							
Freon 11	ug/l	150	Р	ND ND	ND							
Freon 113	ug/l	1200		ND ND	ND							
Methylene Chloride	ug/l	5	Р	ND ND	ND							
MTBE	ug/l	13	Р	ND ND	ND							
Styrene	ug/l	100	Р	ND ND	ND							
Tert Amyl Methyl Ether	ug/l			ND ND	ND							
Tetrachloroethylene (PCE)	ug/l	5	Р	ND ND	ND							
Toluene	ug/l	150	Р	ND ND	ND							
Total Trihalomethanes	ug/l	80	Р	ND ND	ND							
trans-1,2-Dichloroethylene	ug/l	10	Р	ND ND	ND							
Trichloroethylene (TCE)	ug/l	5	Р	ND ND	ND							
Vinyl chloride (VC)	ug/l	0.5	P	ND ND	ND							
		11/50	Р	ND ND	ND							
Xylenes (Total)	ug/l	1750										
Xylenes (Total) Others												
Xylenes (Total) Others 1,4-Dioxane	ug/l	1	N									
Xylenes (Total) Others			N P		 ND	 ND	 ND	 ND	 ND	 ND	 ND	 ND

Page 34 of 34

Constituents			ype				Willowk	orook #1			
Constituents	Units	MCL	MCL Type	Zor 4/1/2020	ne 1 9/29/2020	Zo 4/1/2020	ne 2 9/29/2020	Zor 4/1/2020	ne 3 9/29/2020	Zc 4/1/2020	9/29/2020
General Minerals				22.0	220	100	100	100	100	100	100
Alkalinity	mg/l			230	230	180	180 5.2	180 5.9	180 5.9	190 6	190 6
Anion Sum Bicarbonate as HCO3	meq/l mg/l			280	280	220	220	220	220	230	230
Boron	mg/l	1	N	0.15	0.14	0.12	0.1	0.12	0.11	0.12	0.11
Bromide	ug/l			100	100	98	97	100	110	130	130
Calcium, Total	mg/l			39	39	54	54	59	60	60	61
Carbon Dioxide	mg/l			3.6	3.6	2.3	2.3	3.6	3.6	3.8	3.8
Carbonate as CO3	mg/l			2.3	2.3	2.3	2.3	ND	ND	ND	ND
Cation Sum	meq/l			5.3	5.4	5.3	5.3	5.8	6	5.8	6
Chloride	mg/l	500	S	18	18	21	21	22	23	32	31
Fluoride	mg/l	2	Р	0.3	0.3	0.3	0.3	0.4	0.4	0.37	0.36
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			31	31	23	29	23	29	40	45
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			4.1	4.1	2.5	2.5 42	3.3 40	3.4	2.8	2.9
Sodium, Total Sulfate	mg/l	500		61	62 15	41 48	42	40	41 80	43 62	46 63
Total Dissolved Solid (TDS)	mg/l	1000	S	310	320	48 310	46 310	350	80 360	350	360
Total Nitrogen, Nitrate+Nitrite	mg/l mg/l	1000	S P	310 ND	320 ND	310 ND	310 ND	350 ND	360 ND	350 ND	360 ND
General Physical Properties	mg/1	10	r	ND	nD	ND	ND	ND ND	ND ND	nD.	нD
Apparent Color	ACU	15	S	10	ND	ND	ND	ND	ND	3	ND
Hardness (Total, as CaCO3)	mg/l			130	130	170	170	200	200	190	190
Lab pH	Units		1	8.1	8.1	8.2	8.2	8	8	8	8
Langelier Index - 25 degree	None			0.73	0.66	0.82	0.8	0.71	0.66	0.71	0.73
Odor	TON	3	S	2	2	2	ND	2	ND	1	3
Specific Conductance	umho/cm	1600	S	520	510	510	500	540	540	580	570
Turbidity	NTU	5	S	0.14	0.18	ND	0.19	0.22	0.48	5.5	10
Metals											
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	28	130	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	4.1	3.8	ND	ND	3	3.1	5.2	5.5
Barium, Total	ug/l	1000	Р	47	42	52	52	76	83	150	150
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	1200		0.18	ND	0.18	ND	0.13	ND	0.14	ND
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.065	0.067	ND	ND	0.083	0.086 ND	0.32	0.04
Lead, Total Magnesium, Total	ug/l	15	Р	ND 7.7	ND 7.7	ND 9.6	ND 9.4	ND 12	13	ND 10	ND 10
Magnesium, Total Manganese, Total	None ug/l	50	S	52	48	45	45	27	28	100	94
Manganese, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	ND	ND
Silver. Total	ug/1 ug/1	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds											
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l		-	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	6	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	ug/l ug/l	300	Р	ND	ND	ND	ND	ND	ND ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500	r	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100		ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l		1	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND
Others											
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			1.4	1.3	ND	0.38	ND	0.3	ND	0.28

Page 1 of 22

Constituents			lype				Cars	on #1			
Constituents	Units	MCL	MCL Type	Zor 3/4/2020	ne 1 9/10/2020	Zor 3/4/2020	ne 2 9/10/2020	Zor 3/4/2020	ne 3 9/10/2020	Zo 3/4/2020	ne 4 9/10/2020
General Minerals											
Alkalinity	mg/l			150	150	170	170	170	170	190	190
Anion Sum	meq/l			3.5	3.5	4.1	4.1	5.3	5.3	6.7	6.7
Bicarbonate as HCO3	mg/l			180	180	210	210	200	200	230	230
Boron	mg/l	1	Ν	0.092	0.087	0.1	0.097	0.1	0.098	0.12	0.12
Bromide	ug/l			100	100	100	100	110	110	240	250
Calcium, Total	mg/l			20	21	32	33	43	45	54	58
Carbon Dioxide	mg/l			ND	ND	3.4	2.7	2.1	2.1	3.8	3.8
Carbonate as CO3	mg/l			ND	2.3	ND	ND	2	2	ND	ND
Cation Sum	meq/l	500		3.5	3.5	4	4	5.2	5.3	6.5	6.8
Chloride	mg/l	500	S	21	20	22	21	24	23	50	49
Fluoride	mg/l	2	Р	0.25	0.24	0.2	0.2	0.29	0.28	0.38	0.37
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l	45		28	27	30	32	32	32	92	100
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			2.6	2.6	2.2	2.1	2.8	2.8	3.6	3.6
Sodium, Total	mg/l			49	48	42	41	45	45	57	58
Sulfate	mg/l	500		ND	ND	ND	ND 220	61	63	74	76
Total Dissolved Solid (TDS)	mg/l	1000	S	200	200	220	230	300	290	380	380
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties	ACTI	1.5				N.P.	NE			175	
Apparent Color	ACU	15	S	5	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			66	68	110	110	160	160	200	210
Lab pH	Units		<u> </u>	8.2	8.3	8	8.1	8.2	8.2	8	8
Langelier Index - 25 degree	None	2	-	0.26	0.41	0.4	0.53	0.66	0.7	0.6	0.69
Odor Specific Conductores	TON	3	S	1 340	ND 340	ND 390	ND 390	ND 480	ND 490	1	ND 640
Specific Conductance	umho/en	1600								620	640
Turbidity	NTU	5	S	0.21	0.15	0.13	0.37	ND	0.25	0.52	0.45
Metals		1000		NID	NID	ND	ND	NID	NID	ND	ND
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	ND 70	ND 70	ND 160	ND 170
Barium, Total	ug/l	1000	Р	14 ND	14 ND	37 ND	38 ND	70 ND	70 ND	ND	170 ND
Beryllium, Total Cadmium, Total	ug/l		P	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	5	P	1.6	ND	ND	ND	ND	ND	ND	ND
Chromium, Total Hexavalent Chromium (Cr VI)	ug/l	50	Р	0.15	ND	0.11	0.02	0.12	0.023	0.11	ND
	ug/l	1300	P	ND	ND	ND	ND	ND	0.023 ND	ND	ND
Copper, Total Iron, Total	ug/l	0.3	P S	ND	ND	0.022	0.023	ND	ND	0.08	0.083
Lead, Total	mg/l	15	P	ND	ND	ND	0.023 ND	ND	ND	ND	0.083 ND
Magnesium, Total	ug/l None	15	P	3.8	3.8	6.6	6.7	12	12	15	16
Magnesium, Total Manganese, Total		50	S	3.8 19	17	14	13	29	28	100	95
Manganese, 10tar Mercury	ug/l	2	P	ND	ND	ND	ND	ND	28 ND	ND	95 ND
Nickel, Total	ug/l ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	r S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	U	2 5000		ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	5000	S	ND	IND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds 1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	70	1	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	0	r	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500	1	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	р	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100	· ·	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND	ND	ND	ND
Others	ug/1	1/50	P	ND	IND.	ND	ND	IND.	IND.	nD	ND
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	N P	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	U	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l	0.5	5	0.68	0.78	0.38	0.46	0.31	0.44	0.4	0.5
rotal Organic Carbon	mg/l	1	I	0.06	0.70	0.36	0.40	0.51	0.44	0.4	0.5

Page 2 of 22

			ype			Carson #2		
Constituents	Units	MCL	MCL Type	Zone 1 3/19/2020	Zone 2 3/19/2020	Zone 3 3/19/2020	Zone 4 3/19/2020	Zone 5 3/19/2020
General Minerals								
Alkalinity	mg/l			160	190	180	180	180
Anion Sum	meq/l			3.8	4.4	4.7	4.3	4.6
Bicarbonate as HCO3	mg/l	1		200	230	220	220	210
Boron Bromide	mg/l ug/l	1	N	0.13	0.13 100	0.12	0.1 100	0.11 100
Calcium, Total	mg/l			2.3	13	31	33	42
Carbon Dioxide	mg/l			ND	ND	ND	2.3	2.2
Carbonate as CO3	mg/l			8.2	4.7	3.6	2.3	2.2
Cation Sum	meq/l			3.5	4.2	4.4	4.2	4.6
Chloride	mg/l	500	S	19	21	22	21	21
Fluoride	mg/l	2	Р	0.31	0.22	0.26	0.2	0.28
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND
Iodide	ug/l			28	30	26	35	27
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND
Potassium, Total	mg/l			1.4	3.9	4	3.4	2.8
Sodium, Total	mg/l	505		77	72	46	37	38
Sulfate	mg/l	500	S	ND	1.2	23	ND	25
Total Dissolved Solid (TDS)	mg/l	1000	S	210	250	270 ND	230	270
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND
General Physical Properties	ACU	15		30	10	10	5	NID
Apparent Color Hardness (Total, as CaCO3)	ACU mg/l	15	S	7.2	10 50	10 120	5 120	ND 140
Lab pH	mg/l Units		\vdash	8.8	8.5	8.4	8.2	8.2
Lao pH Langelier Index - 25 degree	None	-	F	0.022	0.48	0.73	0.65	0.71
Odor	TON	3	S	2	2	2	2	0.71
Specific Conductance	umho/cn			380	430	440	410	440
Turbidity	NTU	5	S	0.46	0.11	0.16	0.19	0.29
Metals			5	0110	0111	0110	0.17	0127
Aluminum, Total	ug/l	1000	Р	21	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	ND	ND	ND	ND	ND
Barium, Total	ug/l	1000		ND	6.9	15	16	24
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.32	0.28	0.16	0.18	0.12
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	ND	ND	0.052
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND
Magnesium, Total	None			0.35	4.3	9.8	10	9.1
Manganese, Total	ug/l	50	S	2.8	7.3	13	8.7	40
Mercury Nickel, Total	ug/l	2 100	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total	ug/l ug/l	50	P	ND	ND	ND	ND	ND
Silver, Total	ug/l	100	r S	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND
Volatile Organic Compounds	~~B/ 1	2000				1,12	1.0	
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l		Р	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	0.00		ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	150		ND	ND	ND	ND	ND
Freen 11	ug/l	150		ND	ND	ND	ND	ND
Freon 113 Mathylana Chlarida	ug/l	1200		ND	ND	ND	ND	ND
Methylene Chloride MTBE	ug/l ug/l	5	P P	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P	ND	ND	ND ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100	r	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750		ND	ND	ND	ND	ND
Others			Ė	-				
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	S	ND	ND	ND	ND	ND
Total Organic Carbon	mg/l			1.7	0.77	0.57	0.48	ND

Page 3 of 22

Constituents			ype	Carson #3											
Constituents	Units	MCL	MCL Type	Zor 3/3/2020	ne 1 8/12/2020	Zoi 3/3/2020	ne 2 8/12/2020	Zor 3/3/2020	ne 3 8/12/2020	Zoi 3/3/2020	ne 4 8/12/2020	Zo: 3/3/2020	ne 5 8/12/2020	Zor 3/3/2020	ne 6 8/12/2020
General Minerals	-	1	R.												
Alkalinity	mg/l			360	350	150	150	160	160	160	160	180	180	180	180
Anion Sum	meq/l			7.5	7.4	3.9	3.9	3.9	3.9	3.9	3.9	4.2	4.1	5.1	5.2
Bicarbonate as HCO3	mg/l			430	430	190	190	200	200	200	200	210	210	210	210
Boron	mg/l	1	Ν	0.64 340	0.65	0.1	0.099	0.11 110	0.1	0.09	0.088	0.11 99	0.1	0.13	0.12
Bromide Calcium, Total	ug/l mg/l			7.9	8.2	20	110 19	110	110	26	110 25	32	31	50	48
Carbon Dioxide	mg/l			2.8	3.5	ND	ND	ND	2.1	ND	2.1	ND 32	2.7	2.7	2.2
Carbonate as CO3	mg/l			7	5.6	3.1	3.1	3.3	2.1	2.6	2	2.7	ND	ND	2.2
Cation Sum	meq/l			7.1	7	3.8	3.6	3.9	3.7	3.9	3.8	4.2	4	5.4	5.1
Chloride	mg/l	500	S	12	11	21	20	21	20	21	21	22	21	20	21
Fluoride	mg/l	2	Р	0.52	0.54	0.22	0.24	0.28	0.29	0.24	0.25	0.24	0.25	0.34	0.35
Hydroxide as OH, Calculated	mg/l			ND	ND										
Iodide	ug/l			100	120	28	27	28	28	25	26	30	25	25	20
Nitrate (as NO3)	mg/l	45	Р	ND	ND										
Nitrate as Nitrogen Nitrite, as Nitrogen	mg/l mg/l	10	P P	ND ND	ND ND										
Potassium, Total	mg/l	1	Р	2.4	2.5	2.8	2.8	3.1	2.9	3.6	3.5	2.7	2.6	3.2	3.1
Sodium, Total	mg/l			150	140	55	53	61	58	46	46	41	41	40	39
Sulfate	mg/l	500	S	ND	ND	11	11	ND	ND	ND	ND	ND	ND	50	52
Total Dissolved Solid (TDS)	mg/l	1000	S	470	460	230	220	220	230	220	220	240	220	320	300
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND										
General Physical Properties															
Apparent Color	ACU	15	S	120	130	5	ND	10	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			28	30	65	62	58	54	92	89	110	110	170	170
Lab pH	Units			8.4	8.3	8.4	8.4	8.4	8.2	8.3	8.2	8.3	8.1	8.1	8.2
Langelier Index - 25 degree	None	2	6	0.53	0.43	0.51	0.48	0.47	0.29	0.55 ND	0.48	0.66	0.44	0.72 ND	0.75
Odor Specific Conductance	TON 1mho/cn	3 1600	S S	2 660	2 670	2 380	2 360	2 360	360	ND 360	2 360	400	2 390	ND 500	480
Turbidity	NTU	5	S	0.31	0.89	0.19	0.21	0.15	0.11	0.1	0.15	0.1	0.18	0.34	0.38
Metals	NIC	5	3	0.51	0.07	0.17	0.21	0.15	0.11	0.1	0.15	0.1	0.10	0.54	0.56
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	90	ND	57
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	ND	ND	1.4	1.3								
Barium, Total	ug/l	1000	Р	7.2	6.9	17	17	20	19	24	24	29	30	66	69
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND 0.12	ND	ND 0.12	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	1200	n	0.2	0.097	0.13	0.034	0.12	0.028	0.12	0.02	0.036	ND	0.087	ND ND
Copper, Total Iron, Total	ug/l mg/l	1300 0.3	P	ND 0.044	ND 0.045	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.028	0.028
Lead, Total	ug/l	15	P	0.044 ND	0.045 ND	ND	ND	ND	ND	ND	ND	ND	ND	0.028 ND	0.028 ND
Magnesium, Total	None	15	1	2.1	2.2	3.7	3.6	3.1	2.9	6.5	6.4	8.2	7.9	12	12
Manganese, Total	ug/l	50	S	14	14	15	16	34	32	45	45	22	23	50	52
Mercury	ug/l	2	Р	ND	ND										
Nickel, Total	ug/l	100	Р	ND	ND										
Selenium, Total	ug/l	50	Р	ND	ND										
Silver, Total	ug/l	100	S	ND	ND										
Thallium, Total	ug/l	2	Р	ND	ND										
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	33	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds 1.1-Dichloroethane		E	n	ND	ND										
1,1-Dichloroethylene	ug/l ug/l	5	P P	ND ND	ND ND	ND	ND								
1,2-Dichloroethane	ug/l	0.5	P	ND	ND										
Benzene	ug/l	1	P	ND	ND										
Carbon Tetrachloride	ug/l	0.5	P	ND	ND										
Chlorobenzene	ug/l	70	Р	ND	ND										
Chloromethane (Methyl Chloride)	ug/l			ND	ND										
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND										
Di-Isopropyl Ether	ug/l			ND	ND										
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l	150		ND	ND										
Freon 11 Freon 113	ug/l	150		ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND
Methylene Chloride	ug/l	1200 5	_	ND ND	ND ND										
Methylene Chloride MTBE	ug/l ug/l	13	P P	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
Styrene	ug/l	100	P	ND	ND										
Tert Amyl Methyl Ether	ug/l		L.	ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND										
Toluene	ug/l	150	Р	ND	ND										
Total Trihalomethanes	ug/l	80	Р	ND	ND										
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND										
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND										
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND										
Xylenes (Total)	ug/l	1750	Р	ND	ND										
Others	110/	1	×.	NID	NID	ND	ND	ND	ND	NID	ND	ND	ND	NID	ND
1,4-Dioxane Perchlorate	ug/l	6	N P	ND ND	ND ND										
Surfactants	ug/l mg/l	0.5	P	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
Total Organic Carbon	mg/l mg/l	0.5	5	12	13	0.71	0.88	0.94	ND 1.2	0.54	0.74	0.37	0.39	ND	ND
. can organic curbon	<u>g</u> /1	I		12	1.5	0./1	0.00	0.74	1.2	0.07	U./T	0.57	0.37		110

Page 4 of 22

Constituents			Fype			ndler #3	
	Units	MCL	MCL Type	Zor 7/9/2020	8/27/2020	Zor 7/9/2020	8/27/2020
General Minerals						40.0	
Alkalinity	mg/l			360	360	400	390
Anion Sum	meq/l			12	12	16	15
Bicarbonate as HCO3	mg/l	1		440	430	490	480
Boron Bromide	mg/l	1	Ν	0.19	0.19	0.29	0.29
	ug/l			660 93	650 91	580 140	570
Calcium, Total	mg/l						140
Carbon Dioxide	mg/l			11 ND	11 ND	20 ND	20 ND
Carbonate as CO3	mg/l						
Cation Sum Chloride	meq/l	500	S	12 140	12 140	15 190	15 190
Fluoride	mg/l	2	P	0.22	0.24	0.16	0.15
Hydroxide as OH, Calculated	mg/l mg/l	2	г	ND	ND	ND	ND
Iodide	ug/l			92	95	ND	ND
Nitrate (as NO3)	mg/l	45	Р	ND	ND	46	38
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	10	8.6
Nitrite, as Nitrogen	mg/l	1	P	ND	ND	ND	ND
Potassium, Total	mg/l		-	4.4	4.3	4.4	4.4
Sodium, Total	mg/l			110	110	110	100
Sulfate	mg/l	500	S	35	33	85	81
Total Dissolved Solid (TDS)	mg/l	1000		690	670	910	880
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	10	8.6
General Physical Properties					112		0.0
Apparent Color	ACU	15	S	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l		5	340	330	520	520
Lab pH	Units			7.8	7.8	7.6	7.6
Langelier Index - 25 degree	None			0.94	0.93	1	0.96
Odor	TON	3	S	ND	ND	ND	ND
Specific Conductance	umho/cn	1600		1200	1100	1400	1500
Turbidity	NTU	5	S	1.1	1.4	2.4	0.41
Metals		5	5			2	0111
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	2.4	2	1.7	1.7
Barium, Total	ug/l	1000		28	29	130	140
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	2.4	2.5
Hexavalent Chromium (Cr VI)	ug/l			0.1	ND	2.8	2.3
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.23	0.22	ND	ND
Lead, Total	ug/l	15	Р	ND	ND	ND	ND
Magnesium, Total	None			26	25	41	42
Manganese, Total	ug/l	50	S	74	75	6.4	6.2
Mercury	ug/l	2	Р	ND	ND	ND	ND
Nickel, Total	ug/l	100	Р	ND	ND	83	90
Selenium, Total	ug/l	50	Р	ND	ND	14	14
Silver, Total	ug/l	100	S	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND
Volatile Organic Compounds	-						
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l			ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND
Freon 11	ug/l	150		ND	ND	ND	ND
Freon 113	ug/l	1200	_	ND	ND	ND	ND
Methylene Chloride	ug/l	5	Р	ND	ND	ND	ND
MTBE	ug/l	13	Р	ND	ND	ND	ND
Styrene	ug/l	100	Р	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND
Toluene	ug/l	150		ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND
Others							
1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND
Perchlorate	ug/l	6	Р	ND	ND	2.8	2.6
Surfactants	mg/l	0.5	S	ND	ND	ND	ND
Total Organic Carbon	mg/l			1.3	1.5	0.86	0.7

Page 5 of 22

Constituents			ype				Gard	ena #1			
	Units	MCL	MCL Type	Zor 4/2/2020	ne 1 9/9/2020	Zo: 4/2/2020	ne 2 9/9/2020	Zor 4/2/2020	ne 3 9/9/2020	Zor 4/2/2020	ne 4 9/9/2020
General Minerals						100	100				
Alkalinity	mg/l			270	270	190	190	170	170	220	220
Anion Sum Bicarbonate as HCO3	meq/l			6 330	5.9 330	5 230	4.9 230	5.5 210	5.4 200	34 260	37 270
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	0.33	0.33	0.12	0.12	0.12	0.11	0.14	0.14
Bromide	ug/l	1	IN	140	130	120	130	110	92	2500	2600
Calcium, Total	mg/l			13	14	44	45	53	54	360	360
Carbon Dioxide	mg/l			2.7	4.3	3	3	3.4	2.6	13	14
Carbonate as CO3	mg/l			4.3	2.7	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			5.4	5.5	4.9	5	5.4	5.5	33	33
Chloride	mg/l	500	S	19	18	31	31	23	23	950	1000
Fluoride	mg/l	2	Р	0.2	0.2	0.45	0.43	0.4	0.39	0.15	0.14
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l	45	-	40	39	37	38	25	34	ND	ND
Nitrate (as NO3)	mg/l	45 10	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	94 21	100 23
Nitrate as Nitrogen	mg/l mg/l	10	P	ND	ND	ND	ND	ND	ND	ND 21	ND
Nitrite, as Nitrogen Potassium, Total	mg/l	1	Р	11	11	3.2	3.4	2.9	3	7.5	7.9
Sodium, Total	mg/l			90	91	42	43	41	41	140	130
Sulfate	mg/l	500	S	ND	ND	13	7.8	68	68	63	68
Total Dissolved Solid (TDS)	mg/l	1000	S	330	350	290	290	320	330	2600	2400
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	ND	ND	ND	ND	2000	23
General Physical Properties	.9.										
Apparent Color	ACU	15	S	25	25	3	ND	ND	ND	3	ND
Hardness (Total, as CaCO3)	mg/l			61	64	150	150	180	180	1400	1400
Lab pH	Units			8.3	8.1	8.1	8.1	8	8.1	7.5	7.5
Langelier Index - 25 degree	None			0.49	0.27	0.67	0.64	0.63	0.71	1	1
Odor	TON	3	S	2	3	2	1	2	ND	1	ND
Specific Conductance		1600	S	580	570	470	480	520	510	3400	3600
Turbidity	NTU	5	S	1.3	1.9	0.64	1.2	0.74	0.44	1.2	3.7
Metals											
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	17	16	ND	ND	ND	ND	ND	ND
Barium, Total	ug/l	1000	Р	15	15	39	38	36	36	420	470
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	8	8.2
Hexavalent Chromium (Cr VI)	ug/l	1200	_	0.1	ND	0.14	ND	0.089	ND	7.9	7.4
Copper, Total	ug/l	1300		ND	ND	ND	ND	ND 0.048	ND 0.054	ND ND	ND
Iron, Total Lead, Total	mg/l	0.3	S	0.16 ND	0.16 ND	ND ND	ND ND	0.048 ND	0.054 ND	ND	ND ND
Magnesium, Total	ug/l None	15	Р	6.9	7	9.3	9.6	ND 11	ND 11	110	120
Manganese, Total	ug/l	50	s	40	37	34	32	48	48	ND	ND
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Selenium, Total	ug/l	50	P	ND	ND	ND	ND	ND	ND	6	5.6
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	, in the second se										
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	Р	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	-		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	200	D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene Ethyl Tert Butyl Ether	ug/l	300	Р	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Tert Butyl Ether Freon 11	ug/l ug/l	150	D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Freon 11 Freon 113	ug/l ug/l	1200		ND ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100	H	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	0	1750		ND	ND	ND	ND	ND	ND	ND	ND
	0.		<u> </u>	-	-		-		-	-	
Others								1	1		
	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND
Others	ug/l ug/l	1	N P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 10	ND 9.4
Others 1,4-Dioxane	U U	1 6 0.5									

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL. (P): Primary MCL (S): Secondary MCL (N): Notification Level (ND): Not Detected (---): Not Analyzed

Page 6 of 22

Constituents			ype					Gard	ena #2				
Constituents	Units	MCL	MCL Type	Zor 3/25/2020	ne 1 8/26/2020	Zor 3/25/2020	ne 2 8/26/2020	Zor 3/25/2020	ne 3 8/26/2020	Zo: 3/25/2020	ne 4 8/26/2020	Zoi 3/25/2020	ne 5 8/26/2020
General Minerals													
Alkalinity	mg/l			290	280	180	180	180	180	170	170	190	190
Anion Sum	meq/l			6.1	6.1	5.5	5.4	5.2	5.2	4	4	5.3	5.3
Bicarbonate as HCO3	mg/l			350	340	220	220	220	210	210	210	230	240
Boron	mg/l	1	Ν	0.33	0.3	0.15	0.14	0.13	0.12	0.096	0.095	0.12	0.12
Bromide	ug/l			120	120	110	100	100	100	100	100	170	170
Calcium, Total	mg/l			17	16	42	40	50	48	31	30	52	50
Carbon Dioxide	mg/l			2.9	2.2	2.3	2.9	2.3	2.2	4.3	2.2	ND	2.5
Carbonate as CO3	mg/l			4.5	5.6	2.3	ND	2.3	2.2	ND	2.2	3	2.5
Cation Sum	meq/l	500		6.9	5.7	5.7	5.4	5.4 22	5.2 22	4.2	4	5.5 49	5.3
Chloride	mg/l	500	S	13	13	22				21	21		50 0.28
Fluoride Hydroxide as OH, Calculated	mg/l	2	Р	0.25 ND	0.25 ND	0.27 ND	0.26 ND	0.39 ND	0.35 ND	0.28 ND	0.26 ND	0.31 ND	0.28 ND
Iodide	mg/l ug/l			30	36	22	25	24	26	25	31	26	29
Nitrate (as NO3)	mg/l	45	Р	ND	ND								
Nitrate (as NOS)	mg/l	10	r P	ND	ND								
Nitrite, as Nitrogen	mg/l	10	P	ND	ND								
Potassium, Total	mg/l	-	1	5.8	5.6	5.9	5.9	3.6	3.7	3	3.1	2.8	3
Sodium, Total	mg/l			120	98	52	49	44	42	42	40	44	43
Sulfate	mg/l	500	S	ND	ND	60	59	51	50	ND	ND	1.4	1.3
Total Dissolved Solid (TDS)	mg/l	1000	S	350	340	340	320	330	310	240	240	310	300
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND								
General Physical Properties	3-												
Apparent Color	ACU	15	S	25	25	ND	ND	ND	ND	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			70	64	160	150	170	160	110	110	180	170
Lab pH	Units			8.3	8.4	8.2	8.1	8.2	8.2	7.9	8.2	8.3	8.2
Langelier Index - 25 degree	None			0.66	0.72	0.7	0.6	0.74	0.76	0.3	0.58	0.93	0.8
Odor	TON	3	S	2	2	2	ND	2	ND	2	ND	4	3
Specific Conductance	umho/cn	1600	S	560	560	530	530	510	490	380	380	530	530
Turbidity	NTU	5	S	0.47	0.2	ND	0.17	ND	0.26	0.2	0.18	2.2	0.18
Metals													
Aluminum, Total	ug/l	1000	Р	ND	ND								
Antimony, Total	ug/l	6	Р	ND	ND								
Arsenic, Total	ug/l	10	Р	ND	ND								
Barium, Total	ug/l	1000	Р	20	21	19	19	22	22	37	37	95	100
Beryllium, Total	ug/l	4	Р	ND	ND								
Cadmium, Total	ug/l	5	Р	ND	ND								
Chromium, Total	ug/l	50	Р	ND	ND								
Hexavalent Chromium (Cr VI)	ug/l			0.13	0.028	0.066	ND	0.058	ND	0.063	ND	0.039	ND
Copper, Total	ug/l	1300	Р	ND	ND								
Iron, Total	mg/l	0.3	S	0.028	0.027	0.034	0.033	0.041	0.036	0.08	0.071	0.035	ND
Lead, Total	ug/l	15	Р	ND	ND								
Magnesium, Total	None	50		6.6	5.8	14	13	12	11	9	8.4	11	10
Manganese, Total	ug/l	50	S	25 ND	25	27	26	38	35	50	48	43	45
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND
Nickel, Total	ug/l	100 50	P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND
Selenium, Total	ug/l	100	P S	ND	ND								
Silver, Total Thallium, Total	ug/l	2	P	ND	ND								
Zinc, Total	ug/l ug/l	5000	r S	ND	ND								
Volatile Organic Compounds	ug/1	5000	3	ND	ND								
1,1-Dichloroethane	ug/l	5	Р	ND	ND								
1,1-Dichloroethylene	ug/l	6	P	ND	ND								
1,2-Dichloroethane	ug/l	0.5	г Р	ND	ND								
Benzene	ug/l	1	P	ND	ND								
Carbon Tetrachloride	ug/l	0.5	P	ND	ND								
Chlorobenzene	ug/l	70	Р	ND	ND								
Chloromethane (Methyl Chloride)	ug/l			ND	ND								
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND								
Di-Isopropyl Ether	ug/l	1		ND	ND								
Ethylbenzene	ug/l	300	Р	ND	ND								
Ethyl Tert Butyl Ether	ug/l			ND	ND								
Freon 11	ug/l	150	Р	ND	ND								
Freon 113	ug/l	1200	Р	ND	ND								
Methylene Chloride	ug/l	5	Р	ND	ND								
MTBE	ug/l	13	Р	ND	ND								
Styrene	ug/l	100	Р	ND	ND								
Tert Amyl Methyl Ether	ug/l			ND	ND								
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND								
Toluene	ug/l	150	Р	ND	ND								
Total Trihalomethanes	ug/l	80	Р	ND	ND								
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND								
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND								
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND								
Xylenes (Total)	ug/l	1750	Р	ND	ND								
Others													
1,4-Dioxane	ug/l	1	N	ND	ND								
Perchlorate	ug/l	6	Р	ND	ND								
Surfactants	mg/l mg/l	0.5	S	ND 3.4	ND 3.3	ND 0.44	ND 0.40	ND 0.24	ND	ND	ND 0.59	ND 0.22	ND
Total Organic Carbon						0.44	0.49	0.34	0.4	0.57	0.58	0.33	0.36

Page 7 of 22

general Museria Const. Const. Const. Const. Const. Const. Const. Const. Museria Museria ALadiany med. 1	Constituents			ype			Hawth	orne #1		
General Minerah Landa NumeriaNNN<	Constituents	Jnits	ACL	ICL T						Zone 6 3/19/2020
Attich Sum ing of the stress of	General Minerals	1	~	2	5/17/2020	5/19/2020	5/17/2020	5/17/2020	5/17/2020	5/17/2020
Bicohone and ICOS m [ms] 1 × L.30 1.1 + 0.48 500 390 230 250	Alkalinity	mg/l			690	670	410	320	190	250
Soon mp1 1 N 1.1 0.48 0.07 0.11 Calcun, Total mp1 1 13 16 230 700 Calcun, Total mp1 1 13 16 23 11 100 Calcun, Total mp1 1 14 14 5.0 12 11 Calcun, Sum mp1 2 1 14 4.4 5.0 7.2 11 Calcun, Sum mp1 2 1 0.0 <										19
internation upp 1 550 310 300 200 250 750 Carlon Duration upp 1 1 1 1 1 1 1 Carlon Duration upp 1 1 1 1 1 1 1 1 Carlon Duration upp 2 1										300
Calcian, Frail mpl 1 15 16 33 31 100 Calconzi act03 mpl 1 11 6.7 6.5 5.1 3.3 Calconzi act03 mpl 1 6.9 11 1.1 32 ND Calconzi act03 mpl 1 6.9 1.1 0.23 0.23 0.23 Financi actonzi act03 mpl 2 0 0.1 0.23 0.23 0.23 Financi actonzi		,	1	Ν						0.18
Carbon Lock mg1 n <										930 150
Cathonize (C3) mpl Impl Mode Mode Mode Mode Cathonize mpl X0 X 44 44 9.8 7.2 111 Chorde mpl X0 X 44 44 9.8 7.2 111 Chorde mpl X0 X 44 44 9.8 7.2 111 Viscous and CALCaculation mpl X0 X0 ND										130
Cation Num mergl a 14 14 40 9.0 7.2 11 Fiscide mpl 2 F 0.11 0.33 0.21 0.38 0.23 Fiscide mpl 2 F 0.11 0.33 0.21 0.38 0.23 Fiscide Mage Mass Name <										ND
Chorde mp1 500 2 r 44 44 56 42 380 Informize of II, Cataliaci mp1 ND										18
Hybols at Olf, Calualati mp1 A ND ND ND ND ND ND ND Ninte (n NO) mp1 45 P ND		1	500	S						310
India up1 val 640 85 690 477 445 Ningia (a NU) mp1 10 p ND ND ND ND ND Ningia (a Ningon mp1 10 p ND ND ND ND ND Ningia (a Ningon mp1 1 p ND ND ND ND ND Solum, Tola mp1 10 2 ND	Fluoride	mg/l	2	Р	0.11	0.23	0.21	0.38	0.28	0.27
Ninai (a N0); np1 45 ND ND ND ND ND ND Nintica is Nincom ng1 1 7 ND ND <t< td=""><td>Hydroxide as OH, Calculated</td><td>mg/l</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Ninte as Ninogen ng2 10 ND ND ND ND ND ND ND Petessian, Total ng1 1 P ND ND ND ND ND ND Solar, Total ng1 10 2 200 130 97 7.2 Solar, Solar, Total ng1 10	Iodide	ug/l			60				45	93
Ninita Ninogan mg1 I ND										ND
Focasian, Total ng1 22 16 13 9,1 7,3 Sidie ng1 80 8 ND ND ND ND 72 Sidie ng1 80 8.00 ND ND ND ND 72 Sidie ng1 10 7 ND ND ND ND 77 Sidie ng1 10 7 ND ND ND ND ND Sidie ng1 15 16 ND ND ND ND ND ND Sidie Cal. ND										ND
Saduar, Sada mg1 200 270 130 97 72 Total Book (s) Sufato mg1 100 s ND ND ND ND ND Total Book (s) Sufato mg1 10 r ND ND ND ND ND General Physical Properties -			1	Р						ND
Subine mp1 50 ND ND ND ND ND ND 27 Tool bosived Solid (TDS) mp1 100 \$ \$50 \$830 \$10 \$40 770 ND General Psycial Properties - - - - - - - - - Apparation (Color ACC 15 \$ ND ND ND ND ND Apparation (Color ACC 15 \$ ND ND Apparation (Color ACC 16 3 3 5 2 1 1 2 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.1</td></td<>										5.1
Foal Disolved Stall(TDS) mp1 100 s 830 810 ND ND <t< td=""><td></td><td></td><td>500</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>150</td></t<>			500	-						150
Total Ninogen, Ninat+Ninite mp1 10 ND ND ND ND ND ND Apparent Color ACU 15 s 180 350 55 25 ND Apparent Color ACU 15 s 180 140 300 140 300 Lab pli Units s 8.1 8.3 8.1		0								230 1000
General Physical Properties C a Image Image <thimage< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></thimage<>										ND
Apparent Color ACU 15 8 180 350 35 25 ND Lab pH Unix 4 8.7 80 1180 140 300 1 Lab pH Unix 5 8.1 8.3 8.1 8.1 8.1 Lab pH Unix 5 0.74 0.94 0.03 0.75 0.97 Specific Conductace mboor 1600 8 1.400 1300 9.00 7.00 1.300 Tubidity NTU 5 8 0.3 0.32 0.16 0.42 0.14 Mamment fold W1 100 P NDD NDD ND ND <td< td=""><td></td><td>mg/1</td><td>10</td><td>r</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>		mg/1	10	r	ND	ND	ND	ND	ND	ND
Hadnes CaCO3) mg1 Image S7 80 180 140 390 Langeler Index -25 degree Nore Image 8.1 8.1 8.1 8.1 8.1 Specific Conductance ImboX 160 0.74 0.94 0.93 0.75 0.9 Specific Conductance ImboX 160 1.400 1300 930 700 1300 Michainer VT 5 8 0.3 0.32 0.16 0.42 0.14 Metain VT 5 8 0.3 0.32 0.16 0.42 0.14 Metain VT 5 8 0.3 0.32 0.16 0.40 0.14 0.16 0.01 ND		ACU	15	S	180	350	35	25	ND	ND
Lab pH Unix Image Index 2 Stages No			15	3						560
Langeler Index - 25 degree None I 0.74 0.94 0.93 0.75 0.9 Oder TON 3 2 2 1 1 2 Specific Conductance mbo/ct [500] 5 1400 1300 930 700 1300 Turbidity NTU 5 8 0.3 0.32 0.16 0.42 0.14 Metais - - - - - - - - Metais - - ND ND ND ND ND ND Attimum, Total ug1 100 P ND <										7.6
Odor TON 3 S 2 2 1 1 2 1 Turbidity NTU 5 1400 1300 930 700 1300 Turbidity NTU 5 0.33 0.32 0.16 0.42 0.14 Atminum, Total ugl 0 P ND ND ND ND ND Atminum, Total ugl 0 P ND ND ND ND ND Atminum, Total ugl 0 P ND										0.86
Specific Conductance mhorn Hofol S 1400 1300 930 700 1300 P Metals P N 0.32 0.16 0.42 0.14 Metals P ND ND ND ND ND ND Arminory, Total ugl 0 P ND ND ND ND ND ND Arseni, Total ugl 100 P ND <			3	S			1			2
Tubidary NTU S 0.3 0.32 0.16 0.42 0.14 Atminony, Total ugl 1000 r ND ND ND ND Atminony, Total ugl 10 r ND ND ND ND Atminony, Total ugl 100 r ND ND ND ND Bardinn, Total ugl 100 r ND ND ND ND Gambar, Total ugl 5 r ND ND ND ND ND Gambar, Total ugl 5 r ND ND ND ND ND Chronium (Cr VI) ugl 0.15 0.15 0.15 0.05 0.0683 ND Congr, Total ugl 0.3 s 1.4 58 56 32 96 Magnese, Total ugl 10 r ND ND ND ND Siker, Total ug						1300	930	700		1800
Aluminan, Total ugil 1600 P ND ND ND ND ND Antinony, Total ugil 10 P ND ND ND ND ND Beryin, Total ugil 4 P ND ND ND ND ND Gamman, Total ugil 5 P ND ND ND ND ND ND Gamman, Total ugil 50 P ND ND ND ND ND ND Gamman, Total ugil 50 P ND		NTU	5	S	0.3	0.32	0.16	0.42	0.14	0.81
Attimony, Iolal ugl 6 P ND ND ND ND ND Arsin, Tolal ugl 100 P N1 29 33 28 120 Barium, Tolal ugl 4 P ND ND ND ND Cadmium, Tolal ugl 5 P ND 166 ND ND ND Commun, Tolal ugl 5 P ND 166 ND ND ND Commun, Tolal ugl 5 P ND 166 ND ND ND Copper, Total ugl 13 S 0.15 0.15 0.05 0.083 ND Icad, Total mgl 13 S 0.15 0.015 0.03 14 35 Maganese, Total mgl<150	Metals									
Asenic, Total ug1 100 P ND ND ND ND ND Beryllman, Total ug1 4 P ND ND ND ND ND Cadmum, Total ug1 5 P ND ND ND ND ND Chronium, Total ug1 50 P ND 1.6 ND ND ND Cadmum, Total ug1 1.300 P 0.15 0.15 0.015 0.038 ND Cad, Total ug1 1.300 P ND ND ND ND ND Magnaces, Total ug1 15 P ND ND ND ND ND ND Magnaces, Total ug1 50 S 1.4 58 56 .32 96 1 Magnaces, Total ug1 100 S ND ND ND ND ND ND ND ND ND ND <td>Aluminum, Total</td> <td>ug/l</td> <td>1000</td> <td>Р</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND
Barium, Total ug1 1000 p 31 29 33 28 120 Cadmium, Total ug1 5 P ND ND ND ND ND Cadmium, Total ug1 5 P ND ND ND ND ND Commun, Total ug1 50 P ND 1.6 ND ND ND Copper, Total ug1 130 P ND ND ND ND Led, Total ng1 13 S 0.15 0.15 0.15 0.083 ND Maganese: Total ug1 50 I H SS 56 32 96 Maganese: Total ug1 50 P ND ND ND ND ND ND Steer, Total ug1 50 P ND ND <td< td=""><td></td><td>ug/l</td><td></td><td>Р</td><td></td><td></td><td></td><td></td><td></td><td>ND</td></td<>		ug/l		Р						ND
Beryllum, Totalug14pNDNDNDNDNDNDChronium, Totalug150pND1.6NDNDNDNDChronium, Totalug11.00pNDNDNDNDNDNDCopper, Totalug11.30pNDNDNDNDNDNDNDCopper, Totalug11.30pNDNDNDNDNDNDNDLad, Totalug11.5pNDNDNDNDNDNDNDMagnesium, Totalug11.5pNDNDNDNDNDNDMagnesic, Totalug12.pNDNDNDNDNDNDMagnesic, Totalug150s1.458563.296NDMercuryug120pNDNDNDNDNDNDNDStever, Totalug150pNDNDNDNDNDNDStever, Totalug150pNDNDNDNDNDNDStever, Totalug150pNDNDNDNDNDNDTableug150pNDNDNDNDNDNDTableug150pNDNDNDNDNDNDStever, Totalug150 </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5</td>		,								1.5
Cadmium, Total ug1 5 p ND ND ND ND ND ND Corport, Total ug1 130 p ND ND ND ND ND ND Coper, Total ug1 130 p ND ND ND ND ND ND Coper, Total ug1 130 p ND		•								47
Chronium, Total ug1 50 P ND 1.6 ND ND ND ND Chronium (Cr VI) ug1 1300 P ND		-								ND
Heavalent Chromium (Cr VI) ug1 130 0.15 0.2 0.099 0.11 0.11 0.11 Iong, Total mg1 1.3 s 0.15 0.15 0.05 0.083 ND Icad, Total ug1 1.7 ND ND ND ND ND Magnesium, Total wg1 2.0 1.2 9.8 2.3 1.4 3.5 Mangnese, Total wg1 2.0 1.2 9.8 2.3 1.4 3.6 Mercury ug1 2.0 1.2 9.8 2.3 1.4 3.6 Mercury ug1 2.0 P ND		•								ND
Copper, Total up 1300 P ND ND ND ND ND ND Lead, Total up 15 P ND ND </td <td></td> <td></td> <td>50</td> <td>Р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>			50	Р						ND
			1200	-						0.092
Lead. Total ug1 15 P ND ND ND ND ND ND Magnesium, Total None 12 9.8 23 14 35 Magnesice, Total ug1 50 s 14 58 56 32 96 Mercury ug1 00 P ND ND ND ND ND Stelenium, Total ug1 100 P ND ND ND ND ND Stlver, Total ug1 500 P ND		,								ND 0.12
Magnesium, Total None I 12 9.8 23 14 35 Manganese, Total ug1 50 s 14 58 56 32 96 Mercury ug1 2 P ND ND ND ND ND Nickel, Total ug1 100 P ND ND ND ND ND Silver, Total ug1 100 S ND ND ND ND ND Silver, Total ug1 100 S ND ND ND ND ND ND Zine, Total ug1 500 S ND ND ND ND ND ND J.1-Dichtorochylene ug1 6 P ND	,									ND
Marganese, Total ug/l 50 s 14 58 56 32 96 Mercury Mercury ug/l 100 P ND			15	г						44
Mercury ug/l 2 P ND <			50	s						440
Nickel, Total ug/l 100 P ND ND ND ND ND ND Selenium, Total ug/l 50 P ND		,								ND
Selenium, Total ug/l 50 P ND ND ND ND ND ND ND Silver, Total ug/l 100 s ND		•								ND
Thallium, Totalug/l2PNDNDNDNDNDNDNDZinc, Totalug/l5000sND </td <td>Selenium, Total</td> <td>-</td> <td>50</td> <td>Р</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Selenium, Total	-	50	Р	ND	ND	ND	ND	ND	ND
Zinc, Totalug/l5000sNDNDNDNDNDNDVlatile Organic Compounds </td <td>Silver, Total</td> <td>ug/l</td> <td>100</td> <td>S</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds C I P ND ND ND ND ND IND	Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND
I,1-Dichloroethane ug/l 5 P ND		ug/l	5000	S	ND	ND	ND	ND	ND	ND
1,1-Dichloroethyleneug/16PNDNDNDNDNDND1,2-Dichloroethaneug/10.5PNDNDNDNDNDNDNDCarbon Tetrachlorideug/11.5PNDNDNDNDNDNDNDCarbon Tetrachlorideug/10.5PNDNDNDNDNDNDNDChloroethane (Methyl Chloride)ug/16PNDNDNDNDNDNDNDChloroethane (Methyl Chloride)ug/16PNDNDNDNDNDNDNDCis-1,2-Dichloroethyleneug/16PNDNDNDNDNDNDNDNDEthylbenzeneug/1300PNDNDNDNDNDNDNDNDNDEthyl Tert Butyl Etherug/11200PNDNDNDNDNDNDNDNDNDFreon 11ug/11200PNDN										
1.2-Dichloroethaneug/l0.5PNDNDNDNDNDNDNDBenzeneug/l1PNDNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDChlorobenzeneug/l70PNDNDNDNDNDNDNDChlorobenzeneug/l70PNDNDNDNDNDNDChlorobenzeneug/l16PNDNDNDNDNDNDChlorobertyleneug/l6PNDNDNDNDNDNDCis-1,2-Dichloroethyleneug/l100PNDNDNDNDNDNDEthylBenzeneug/l300PNDNDNDNDNDNDNDEthylTert Butyl Etherug/l100PNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l15PNDNDNDNDNDNDTotal Trihalomethanesug/l160PNDNDNDNDND										ND
Benzeneug/l1PNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDChlorobenzeneug/l10PNDNDNDNDNDNDNDChlorobenzeneug/l6PNDNDNDNDNDNDNDChloroberthane (Methyl Chloride)ug/l6PNDNDNDNDNDNDDi-Isoproyl Etherug/l6PNDNDNDNDNDNDEthylbenzeneug/l160PNDNDNDNDNDNDEthyl Tert Butyl Etherug/l150PNDNDNDNDNDNDFreen 11ug/l150PNDNDNDNDNDNDNDFreen 113ug/l120PNDNDNDNDNDNDNDMethylene Chlorideug/l13PNDNDNDNDNDNDNDStyreneug/l13PNDNDNDNDNDNDNDNDNDTetra Amyl Methyl Etherug/l150PND <td></td> <td>,</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.51</td>		,		_						0.51
Carbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDChlorobenzeneug/l70PNDNDNDNDNDNDNDChlorobenzeneug/l70PNDNDNDNDNDNDNDChlorobenzeneug/l0PNDNDNDNDNDNDNDcis-1,2-Dichlorocthyleneug/l6PNDNDNDNDNDNDDi-Isopropyl Etherug/l00PNDNDNDNDNDNDEthylTert Butyl Etherug/l150PNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMTBEug/l5PNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDTetrachlorocthylene (PCE)ug/l150PNDNDNDNDNDNDTetrachlorocthylene (PCE)ug/l150PNDNDNDNDNDNDTotal Trihalomethanesug/l150PNDNDNDNDNDNDTotal Trihalomethanesug/l150P<		•	_							ND
Chlorobenzeneug/l70PNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l4NDNDNDNDNDNDNDcis-1,2-Dichloroethyleneug/l6PNDNDNDNDNDNDNDcis-1,2-Dichloroethyleneug/l6PNDNDNDNDNDNDNDEthylbenzeneug/l300PNDNDNDNDNDNDNDNDEthylTert Butyl Etherug/l150PNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDFreon 13ug/l120PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5PND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND ND</td></td<>										ND ND
Chloromethane (Methyl Chloride) ug/l NDNDNDNDNDNDNDcis-1,2-Dichloroethylene ug/l 6PND <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND ND</td>		•								ND ND
cis-1,2-Dichloroethyleneug/l6PNDNDNDNDNDNDNDDi-Isopropyl Etherug/l300PNDNDNDNDNDNDNDEthylBenzeneug/l300PNDNDNDNDNDNDNDEthylTert Butyl Etherug/l300PNDNDNDNDNDNDFreen 11ug/l150PNDNDNDNDNDNDFreen 113ug/l1200PNDNDNDNDNDNDMethylenc Chlorideug/l5PNDNDNDNDNDNDStyreneug/l13PNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l100PNDNDNDNDNDNDNDTotal Trihalomethanesug/l150PNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDNDNDTrichloroethylene (TCE)ug/l5PNDNDNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td< td=""><td></td><td>•</td><td>70</td><td>r</td><td></td><td></td><td></td><td></td><td></td><td>ND</td></td<>		•	70	r						ND
Di-Isopropyl Etherug/lNDNDNDNDNDNDEthylbenzeneug/l300PNDNDNDNDNDNDNDEthyl Tert Butyl Etherug/l100PNDNDNDNDNDNDNDEthyl Tert Butyl Etherug/l150PNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDStyreneug/l131PNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l100PNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l150PND </td <td></td> <td></td> <td>6</td> <td>р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.1</td>			6	р						8.1
Ethylbenzeneug/l300pNDNDNDNDNDNDEthylbenzeneug/l300pNDNDNDNDNDNDEthylTert Butyl Etherug/l150pNDNDNDNDNDNDFreon 11ug/l1200pNDNDNDNDNDNDNDFreon 113ug/l1200pNDNDNDNDNDNDNDMethylene Chlorideug/l5pNDNDNDNDNDNDNDStyreneug/l13pNDNDNDNDNDNDNDStyreneug/l100pNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l150pNDNDNDNDNDNDNDTotal Trihalomethanesug/l150pNDNDNDNDNDNDNDNDNDTrichloroethylene (TCE)ug/l80pND <td< td=""><td></td><td>,</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>ND</td></td<>		,		-						ND
Ethyl Tert Butyl Etherug/lNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDFreon 11ug/l1200PNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l100PNDNDNDNDNDNDNDTolucneug/l150PND <td></td> <td>•</td> <td>300</td> <td>Р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		•	300	Р						ND
Freen 11 ug/l 150 P ND	5		1	Ė						ND
Freen 113ug/l1200pNDNDNDNDNDNDMethylene Chlorideug/l5pNDNDNDNDNDNDMTBEug/l13pNDNDNDNDNDNDNDStyreneug/l100pNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l5pNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5pNDNDNDNDNDNDTotal Trihalomethanesug/l150pNDNDNDNDNDNDTotal Trihalomethanesug/l10pNDNDNDNDNDNDTrichloroethylene (TCE)ug/l5pNDNDNDNDNDNDVinyl chloride (VC)ug/l0.5pNDNDNDNDNDNDNDXylenes (Total)ug/l1750pNDNDNDNDNDNDNDNDNDNDNDNDJ.4-Dioxaneug/l1NNDNDNDNDNDNDNDNDNDND		•	150	Р						ND
Methylene Chlorideug/l5PNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l100PNDNDNDNDNDNDTert Amyl Methyl Etherug/l5PNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l150PNDNDNDNDNDNDTolaneug/l150PNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDTrichloroethylene (TCE)ug/l5PNDNDNDNDNDNDVinyl chloride (VC)ug/l0.5PNDNDNDNDNDNDXylenes (Total)ug/l1750PNDNDNDNDNDNDNDXylenes (Total)ug/l1750PNDNDNDNDNDNDND1,4-Dioxaneug/l1NNDNDNDNDNDNDND		,								ND
Styreneug/l100PNDNDNDNDNDNDTert Amyl Methyl Etherug/lNDNDNDNDNDNDNDTetrachlorocthylene (PCE)ug/l5PNDNDNDNDNDNDTolueneug/l150PNDNDNDNDNDNDNDTolueneug/l150PNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDtrans-1,2-Dichloroethyleneug/l10PNDNDNDNDNDNDTrichloroethylene (TCE)ug/l5PNDNDNDNDNDNDVinyl chloride (VC)ug/l0.5PNDNDNDNDNDNDXylenes (Total)ug/l1750PNDNDNDNDNDNDND1,4-Dioxaneug/l1NNDNDNDNDNDNDND		,	5		ND	ND		ND		ND
Tert Amyl Methyl Ether ug/l ND N	MTBE	ug/l								3
Tetrachloroethylene (PCE) ug/l 5 P ND		•	100	Р						ND
Toluene ug/l 150 P ND										ND
Total Trihalomethanes ug/l 80 P ND ND<		,								ND
trans-1,2-Dichloroethylene ug/l 10 P ND ND </td <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		•								ND
Trichloroethylene (TČE) ug/l 5 P ND										ND
Vinyl chloride (VC) ug/l 0.5 P ND ND </td <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		•								ND
Xylenes (Total) ug/l 1750 P ND		-								20
Others Image: Constraint of the state of th		,								ND
1,4-Dioxane ug/l l N ND ND ND ND ND		ug/l	1750	Р	ND	ND	ND	ND	ND	ND
			1		ND		ND	ND	ND	ND
TERCHOFARE FINDER NUL FINDER NO. FINDER NO. FINDER NO. FINDER NO. FINDER NO. FINDER NO. FINDER NO. FINDER NO. F		•								ND ND
		ug/l								0.22
Surfactants mg/l 0.5 s ND ND ND ND ND Total Organic Carbon mg/l 14 16 3.8 2.6 0.81		,	0.5	S						0.22

Page 8 of 22

Constituents			ype					Inglew	vood #1				
Constituents	Units	MCL	MCL Type	Zor 3/24/2020	ne 1 8/19/2020	Zor 3/24/2020	ne 2 8/19/2020	Zoi 3/24/2020	ne 3 8/19/2020	Zo: 3/24/2020	ne 4 8/19/2020	Zoi 3/24/2020	ne 5 8/19/2020
General Minerals													
Alkalinity	mg/l			1500	1400	770	770	340	340	240	240	270	250
Anion Sum	meq/l			76	76	28 940	27 940	23 420	23 410	15 290	15	23 330	22
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	1800 9.7	1800 12	940	940	420 0.48	0.48	0.19	290 0.2	0.22	310 0.23
Bromide	ug/l	1	N	18000	12	2700	2400	4200	4100	1300	1300	2400	2400
Calcium, Total	mg/l			41	41	61	57	160	160	120	120	200	190
Carbon Dioxide	mg/l			19	23	12	31	8.7	17	3.8	7.5	11	20
Carbonate as CO3	mg/l			18	15	7.7	3.1	2.2	ND	2.4	ND	ND	ND
Cation Sum	meq/l			71	81	24	26	22	22	14	15	22	22
Chloride	mg/l	500	S	1600	1700	430	400	460	450	290	290	480	480
Fluoride	mg/l	2	Р	0.33	0.3	0.26	0.26	0.45	0.43	0.39	0.37	0.22	0.22
Hydroxide as OH, Calculated	mg/l			ND	ND								
Iodide	ug/l			5700	5200	380	410	910	1100	80	80	2.3	1.8
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND	29	29
Nitrate as Nitrogen	mg/l	10	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.6 ND	6.5 ND
Nitrite, as Nitrogen Potassium, Total	mg/l	1	Р	30	46	ND 19	20	ND 8.8	9.6	9.9	ND 11	ND 9	9.7
Sodium, Total	mg/l	-		1500	1700	430	480	190	9.0	9.9	98	150	9.7
Sulfate	mg/l mg/l	500	S	ND	ND	9.4	6.3	190	190	100	98	130	140
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S	4300	4200	9.4	1500	1300	1300	860	870	170	1500
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	4300 ND	ND	ND	ND	ND	ND	ND	ND	6.6	6.5
General Physical Properties			-										
Apparent Color	ACU	15	S	300	350	100	180	10	5	5	3	ND	ND
Hardness (Total, as CaCO3)	mg/l	-		230	230	260	240	660	660	500	500	790	760
Lab pH	Units			8.2	8.1	8.1	7.7	7.9	7.6	8.1	7.8	7.7	7.4
Langelier Index - 25 degree	None			1.6	1.5	1.4	1	1.3	0.99	1.2	0.87	1	0.75
Odor	TON	3	S	17	3	40	2	1	1	1	ND	2	ND
Specific Conductance	umho/cn	1600	S	7200	7200	2600	2400	2200	2200	1500	1500	2200	2200
Turbidity	NTU	5	S	0.9	1	1.3	1.1	3.9	3.4	2.2	2	0.23	0.11
Metals													
Aluminum, Total	ug/l	1000	Р	ND	ND								
Antimony, Total	ug/l	6	Р	ND	ND								
Arsenic, Total	ug/l	10	Р	10	8.3	10	9.1	1.5	1.1	ND	ND	1.2	ND
Barium, Total	ug/l	1000	Р	160	160	100	100	58	57	130	130	150	140
Beryllium, Total	ug/l	4	Р	ND	ND								
Cadmium, Total	ug/l	5	Р	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND 0.16	1.5 0.057	0.081		ND ND	ND	ND 0.046	ND ND	ND 0.21	ND 0.11
Hexavalent Chromium (Cr VI)	ug/l	1200	p	0.16 ND	0.057 ND	0.081 ND	0.041 ND	ND ND	ND ND	0.046 ND	ND ND	0.21 ND	0.11 ND
Copper, Total Iron, Total	ug/l mg/l	1300 0.3	P S	1.3	ND 1.4	0.77	0.86	0.58	0.56	0.4	0.4	ND	ND
Lead, Total	ug/l	15	P	ND	ND								
Magnesium, Total	None	15	1	31	31	27	25	64	64	49	50	70	70
Manganese, Total	ug/l	50	S	47	41	75	71	380	390	230	230	6.4	5
Mercury	ug/l	2	Р	ND	ND								
Nickel, Total	ug/l	100	P	ND	ND								
Selenium, Total	ug/l	50	Р	49	38	6	ND	7.8	7.5	ND	ND	11	9.2
Silver, Total	ug/l	100	S	ND	ND								
Thallium, Total	ug/l	2	Р	ND	ND								
Zinc, Total	ug/l	5000	S	ND	ND								
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND	ND								
1,1-Dichloroethylene	ug/l	6	Р	ND	ND								
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND								
Benzene	ug/l	1	Р	ND	ND								
Carbon Tetrachloride	ug/l	0.5 70	P	ND ND	ND ND								
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l ug/l	70	Р	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
cis-1.2-Dichloroethylene	ug/l	6	Р	ND	ND								
Di-Isopropyl Ether	ug/l	5	-	ND	ND								
Ethylbenzene	ug/l	300	Р	ND	ND								
Ethyl Tert Butyl Ether	ug/l		÷	ND	ND								
Freon 11	ug/l	150	Р	ND	ND								
Freon 113	ug/l	1200	Р	ND	ND								
Methylene Chloride	ug/l	5	Р	ND	ND								
MTBE	ug/l	13	Р	ND	ND								
Styrene	ug/l	100	Р	ND	ND								
Tert Amyl Methyl Ether	ug/l			ND	ND								
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND								
Toluene	ug/l	150	Р	ND	ND								
Total Trihalomethanes	ug/l	80	Р	ND	ND								
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND								
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND								
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND								
Xylenes (Total)	ug/l	1750	Р	ND	ND								
Others													
1,4-Dioxane	ug/l	1	N	ND	ND								
Perchlorate	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	1.9	2.2
Surfactants	mg/l mg/l	0.5	S	0.17 73	0.22 74	ND 14	ND 14	ND 1.3	ND 1.5	ND 0.75	ND 0.68	ND 0.74	ND 0.54
Total Organic Carbon													

Page 9 of 22

Grand Sec. Top Top<	Constituents			ype							Inglew	vood #3	;					
Canzal Mancha Barbane	Constituents	Units	MCL	MCL Type								1				1		ne 7 8/20/2020
Jach Same model i <	General Minerals																	
Biosheam Bios	Alkalinity	mg/l							550	550	790	790	460	460			240	230
bicon mode mode <t< td=""><td>Anion Sum</td><td>meq/l</td><td></td><td></td><td></td><td></td><td>24</td><td>23</td><td>12</td><td>11</td><td></td><td>16</td><td>12</td><td>12</td><td></td><td></td><td></td><td></td></t<>	Anion Sum	meq/l					24	23	12	11		16	12	12				
Picenary pic Pice ice Pice <t< td=""><td>Bicarbonate as HCO3</td><td>mg/l</td><td></td><td></td><td>840</td><td>850</td><td>1300</td><td>1300</td><td>670</td><td>670</td><td>960</td><td></td><td></td><td></td><td></td><td>240</td><td></td><td></td></t<>	Bicarbonate as HCO3	mg/l			840	850	1300	1300	670	670	960					240		
Cachan, Fracial mell I Set	Boron	mg/l	1	Ν						1.1		2.1				-		
Carbox Carbox<	Bromide	ug/l						1700										
Caboon origit 1 1 1 1 7.8 9.9 4.6 3.0 2 N.D N.D N.D Carlos Sun origit 1 1 <th1< th=""> 1 <th1< th=""> 1</th1<></th1<>	Calcium, Total	mg/l				20		11	5.6		15							
Calor.Sam. mell	Carbon Dioxide	mg/l			8.7	11	8.5	11	8.7	4.4	12	9.9	7.3	9	3.2	3.9		7.5
Chaoria map Sol s Sol Sol </td <td></td> <td>mg/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.5</td> <td>11</td> <td></td> <td></td> <td>4.6</td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td>		mg/l							5.5	11			4.6				ND	ND
Binok mpl 2 l l No		meq/l			-													
bity-conder of (C calanda) reg1 [a] [b] [b] [b] ND		~							-	-			-		-			
både vg3 vg3 <td></td> <td>~</td> <td>2</td> <td>Р</td> <td></td>		~	2	Р														
Name a Nisogen mpl 4 p ND																		
Nites: Nites:<		•							-									
Name, answape mg1 1 r ND		v																
Totasian, Total mg1 i<	ě	-																
Solum, Trad. mp1 s S70 S90 400 490 320 230 230 300 180 R0 R0 </td <td></td> <td>-</td> <td>1</td> <td>Р</td> <td></td>		-	1	Р														
Saffac mell Sol ND D <t< td=""><td></td><td>~</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		~				-												
Teal Disolacies Soluti(TDS) mcg1 1000 2 500 2000 6400 6400 6400 6400 440 4400		v	500	_														
Total Nicogen, Names-Nitrice mp1 ND		Ŷ																
General Physical Properties ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< <td></td> <td>~</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		~													-			
Apparatic Color ACU 15 250 180 1800 1800 350 650 1800 700 250 780	U ,	mg/I	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hadness CaCO3 ergl 91 92 91	, <u>,</u>	ACU	15	c	250	190	1500	1600	350	650	1400	400	30	35	ND	ND	5	ND
Lab pH Unit N 8 2 8.1 8.4 8.1 8.1 8.1 8.1 8.1 8.1 8.1 7.1 1.3 1.1 1.0 1.1 1.1 0.0 1.0 1.0 1.1 1.1 0.0 1.0 <th1.0< th=""> 1.0 <th1.0< th=""></th1.0<></th1.0<>			13	S													-	
Lageler Index: 25 degree None I I I I O.S2 0.49 O.S2 0.11 I				_											-			
Oxig TON S I J <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		
Specific Conductance mbox ch [600] is ideal 0.000 1000			2	c									1.1		0.88			
Turbing NTU S 0.44 0.43 0.84 0.85 1.3 0.9 0.91 0.87 0.88 0.11 0.12 0.14 1.5 0.93 Auminamy, Total ugl 100 P N.D N.D <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1100</td> <td></td> <td>770</td> <td></td> <td></td> <td>-</td>					-				-				1100		770			-
Neta Image	*																	
Aluminary, Total ugil Total ND ND </td <td></td> <td>NIU</td> <td>5</td> <td>3</td> <td>0.44</td> <td>0.45</td> <td>0.04</td> <td>0.50</td> <td>1.5</td> <td>0.9</td> <td>0.91</td> <td>0.85</td> <td>0.88</td> <td>0.11</td> <td>0.12</td> <td>0.14</td> <td>1.5</td> <td>0.95</td>		NIU	5	3	0.44	0.45	0.04	0.50	1.5	0.9	0.91	0.85	0.88	0.11	0.12	0.14	1.5	0.95
Atimisory, Total uppl 10 P ND		110/	1000	D	ND	ND	ND	ND	ND	ND	36	36	ND	ND	ND	ND	ND	ND
Assents, Total upil l< l< l< l< l< l< l< l< l< l<< l<< l<< l<< l<< l<< l<< l<< l<< <td></td> <td>-</td> <td></td>		-																
Bartium, Total ugil 100 p 61 57 25 24 14 10 44 41 57 56 72 72 72 260 260 Grafmaim, Total ugil 5 P ND		~																
Beylman, Total ugil 4 r ND		0							-									
Cadmium, Total ug1 5 r ND																		
Chronium, Total ug/l 50 1 4 5 5.8 1.6 2 2.7 3.3 ND ND<		~																
Hexavalent Chromium (Cr VI) ugl 100 0.040 0.43 0.13 0.043 0.15 ND 0.083 ND Copper, Total ugl 10.3 s 0.21 0.2 0.48 0.43 0.43 0.17 0.16 0.09 0.13 0.021 0.022 0.14 0.14 Lead, Total ugl 15 P ND		~																
Coper, Total ug1 1300 P ND ND 2.5 2.1 ND		~	50	1														
Iron. Total mg1 0.3 s 0.21 0.22 0.44 0.45 0.14 0.37 0.36 0.09 0.13 0.021 0.022 0.14 0.14 Lead, Total Wg1 15 P ND <		•	1300	р														
Lad, Total ug1 15 P ND		•																
Magnesium, Total None I 10 10 5.8 6.2 2.9 3 9.8 9.9 17 18 20 2.0 5.3 300 Marganes, Total ugil 100 P ND	-	~																
Manganes, Total ug1 2 s 57 56 23 21 22 20 39 36 50 49 100 100 300 300 Mercury ug1 100 P ND	,	~	15	1														
Mercury ug1 12 P ND ND <t< td=""><td></td><td></td><td>50</td><td>S</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			50	S														
Nickel, Total ug/l 100 p ND		•												-				
Scienting, Total ug/l 160 p 18 18 ND		•																
Silver, Total ug/l 10 N ND	-	-																
Thalium, Total ug1 2 P ND		~																
Zinc, Total ug/l 5000 s ND	/	~																
Volatile Organic Compounds C P P P P P P P P P P P P P P P P P P P ND ND <th< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		•																
1,1-Dickloroethane ug/l 5 p ND		"B' 1	2000		112			112	112	112	112		112	112	112			1.12
I,1-Dichloroethylene ug/l 6 P ND ND <td></td> <td>uø/l</td> <td>5</td> <td>Р</td> <td>ND</td>		uø/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12-Dickloroethane ug/l 0.5 P ND ND <td>/</td> <td>÷</td> <td></td>	/	÷																
Benzene ug/l 1 P ND ND <t< td=""><td>, ,</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	, ,	0																
	/	•																
Chlorobenzene ug/l 70 P ND																		
Chloromethane (Methyl Chloride) ug/l ND		~		_														
cis-1,2-Dichloroethylene ug/l 6 P ND N		•																
Di-Isopropyl Ether ug/l ND ND <td></td> <td>~</td> <td>6</td> <td>Р</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td>		~	6	Р						ND					ND			
Ethylbenzene ug/l 300 P ND		•																
Ethyl Tert Butyl Ether ug/l ND N			300	Р														
Freen 11 ug/l 150 P ND	5	•						ND		ND	ND	ND	ND	ND	ND			
Freen 113 ug/l 1200 P ND		÷	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride ug/l 5 P ND		~						ND		ND			ND					
MTBE ug/l 13 P ND		0																
Tert Amyl Methyl Ether ug/l ND N				Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether ug/l ND N	Styrene	÷			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE) ug/l 5 P ND	Tert Amyl Methyl Ether	•			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes ug/l 80 P ND ND<		ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene ug/l 10 P ND ND <t< td=""><td>Toluene</td><td>ug/l</td><td>150</td><td>Р</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TČE) ug/l 5 P ND	Total Trihalomethanes			Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylenc (TČE) ug/l 5 P ND		•		Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	12
Vinyl chloride (VC) ug/l 0.5 P ND ND </td <td>Trichloroethylene (TCE)</td> <td></td> <td></td> <td>Р</td> <td>ND</td>	Trichloroethylene (TCE)			Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total) ug/l 1750 P ND ND <td>Vinyl chloride (VC)</td> <td>~</td> <td>0.5</td> <td>Р</td> <td>ND</td> <td>0.84</td> <td>0.91</td>	Vinyl chloride (VC)	~	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.84	0.91
Others I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	Xylenes (Total)	ug/l		Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate ug/l 6 P ND							1		1			İ	1		1	İ	İ	
Perchlorate ug/l 6 P ND	1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants mg/l 0.5 s 0.18 ND		~	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Organic Carbon mg/1 25 22 99 130 14 88 26 14 37 4 0.09 11 4.5 38	Surfactants	mg/l	0.5	S	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0.88
	Total Organic Carbon	mg/l			25	22	99	130	14	8.8	26	14	3.7	4	0.99	1.1	4.5	3.8

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL. (P): Primary MCL (S): Secondary MCL (N): Notification Level (ND): Not Detected (---): Not Analyzed

Page 10 of 22

Constituents			ype						Lawno	dale #1					
Constituents	Units	MCL	MCL Type	Zor 5/14/2020	ne 1 9/2/2020	Zoi 5/14/2020	ne 2 9/2/2020	Zor 5/14/2020	ne 3 9/2/2020	Zor 5/14/2020	ne 4 9/2/2020	Zor 5/14/2020	ne 5 9/2/2020	Zor 5/14/2020	ne 6 9/2/2020
General Minerals															
Alkalinity	mg/l			460	460	610	600	250	240	200	190	190	190	290	260
Anion Sum	meq/l			9.7	9.6	13	13	5.7	5.6	6.4	6.6	6.9	7	27	26
Bicarbonate as HCO3	mg/l			560	560	740	730	300	290	240	240	230	230	350	320
Boron	mg/l	1	Ν	0.83	0.81	1.1	1.1	0.17	0.18	0.11	0.11	0.093	0.1	0.29	0.28
Bromide	ug/l			410	390	240	200	130	130	200	200	220	220	1600	1500
Calcium, Total	mg/l			11	11	4.3	4.2	16	17	56	56	54	56	230	220
Carbon Dioxide	mg/l			2.9	3.6	4.8	4.8	2.5	2.4	2.5	2.5	2.4	3	9.1	13
Carbonate as CO3	mg/l			12	9.1	12	12	3.9	3.8	2.5	2.5	2.4	ND	ND	ND
Cation Sum	meq/l			8.7	8.7	12	12	5.3	5.5	6.5	6.6	6.7	6.9	25	24
Chloride	mg/l	500	S	13	15	28	34	25	26	54	60	64	68	620	610
Fluoride	mg/l	2	Р	0.43	0.42	0.3	0.28	0.33	0.32	0.39	0.37	0.42	0.4	0.22	0.22
Hydroxide as OH, Calculated	mg/l			ND											
Iodide	ug/l			170	160	89	88	40	50	36	44	34	40	11	15
Nitrate (as NO3)	mg/l	45	Р	ND	17	17									
Nitrate as Nitrogen	mg/l	10	Р	ND	3.8	3.8									
Nitrite, as Nitrogen	mg/l	1	Р	ND											
Potassium, Total	mg/l			5.7	5.8	8.5	8.8	8.8	9.5	4.2	4.4	5	5.3	9.4	9.5
Sodium, Total	mg/l	500		180	180	260	260	81	84	48	50	56	58	190	180
Sulfate	mg/l	500	S	ND	ND	ND 750	ND 700	1.5	1.3	47	49	59	60	160	150
Total Dissolved Solid (TDS)	mg/l	1000		560	540	750	720	320	310 ND	370	370 ND	400	390	1800	1700
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	3.8	3.8									
General Physical Properties	ACTI	16	-	00	70	100	100	ND	NID	5	ND	ND	ND	ND	ND
Apparent Color	ACU ma/l	15	S	80	70	180	180	ND 77	ND 82	5	ND 210	ND 200	ND 210	ND 820	ND 700
Hardness (Total, as CaCO3)	mg/l			41	41	25	24	77	82	210	210	200	210	820	790
Lab pH	Units			8.5	8.4	8.4	8.4	8.3	8.3	8.2	8.2	8.2	8.1	7.8	7.6
Langelier Index - 25 degree	None	2	~	0.81	0.76	0.46	0.49	0.55	0.59	0.84	0.82 ND	0.81	0.76	1.3 ND	0.97 ND
Odor Specific Conductance	TON 1mho/cn	3 1600	S	2 870	8 850	1 1200	2 1200	2 540	ND 510	1 610	ND 620	1 680	ND 680	ND 2600	ND 2400
1										0.14				2600 ND	0.17
Turbidity Metals	NTU	5	S	0.41	0.86	0.39	0.38	ND	0.22	0.14	0.15	0.17	0.12	ND	0.17
	110/1	1000	D	ND											
Aluminum, Total	ug/l			ND											
Antimony, Total	ug/l	6 10	P	ND	ND	1.2	1.1	ND	ND	1.2	1	ND	ND	1.4	1.3
Arsenic, Total	ug/l		P	12	12	1.2	1.1	16		34	24	100	ND 99	1.4	1.5
Barium, Total Beryllium, Total	ug/l	1000 4	P P	ND	ND	ND	ND	ND	16 ND	ND	34 ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND											
Chromium, Total	ug/l ug/l	50	P	ND	ND	ND	1.2	ND							
Hexavalent Chromium (Cr VI)	ug/l	50	P	0.044	0.036	0.061	0.052	0.028	ND	0.024	ND	0.028	ND	0.45	0.32
Copper, Total	ug/l	1300	Р	0.044 ND	0.030 ND	0.001 ND	0.032 ND	0.028 ND	ND	0.024 ND	ND	0.028 ND	ND	0.43 ND	0.32 ND
Iron, Total	mg/l	0.3	P	0.062	0.061	0.11	0.1	0.039	0.041	0.07	0.068	0.032	0.034	ND	ND
Lead, Total	ug/l	15	P	0.002 ND	0.001 ND	ND	ND	0.039 ND	0.041 ND	ND	0.008 ND	0.032 ND	0.034 ND	ND	ND
Magnesium, Total	None	15	1	3.3	3.3	3.4	3.4	9.1	9.7	18	18	17	18	60	58
Manganese, Total	ug/l	50	S	12	12	31	30	50	49	72	69	74	73	90	64
Mercury	ug/l	2	P	ND											
Nickel, Total	ug/l	100	P	ND											
Selenium, Total	ug/l	50	P	ND											
Silver, Total	ug/l	100	S	ND											
Thallium, Total	ug/l	2	Р	ND											
Zinc, Total	ug/l	5000		ND											
Volatile Organic Compounds	ug/1	2000		112	1.12	112	112	112	112	112	112	112	112	112	112
1,1-Dichloroethane	ug/l	5	Р	ND											
1,1-Dichloroethylene	ug/l	6	Р	ND											
1,2-Dichloroethane	ug/l	0.5	Р	ND											
Benzene	ug/l	1	P	ND											
Carbon Tetrachloride	ug/l	0.5	P	ND											
Chlorobenzene	ug/l	70	P	ND											
Chloromethane (Methyl Chloride)	ug/l		Ė	ND											
cis-1,2-Dichloroethylene	ug/l	6	Р	ND											
Di-Isopropyl Ether	ug/l			ND											
Ethylbenzene	ug/l	300	Р	ND											
Ethyl Tert Butyl Ether	ug/l			ND											
Freon 11	ug/l	150	Р	ND											
Freon 113	ug/l	1200		ND	2.5	2.3									
Methylene Chloride	ug/l	5	P	ND											
MTBE	ug/l	13	Р	ND											
Styrene	ug/l	100	Р	ND											
Tert Amyl Methyl Ether	ug/l			ND											
Tetrachloroethylene (PCE)	ug/l	5	Р	ND											
Toluene	ug/l	150	Р	ND											
Total Trihalomethanes	ug/l	80	P	ND	0.73	ND									
trans-1,2-Dichloroethylene	ug/l	10	Р	ND											
Trichloroethylene (TCE)	ug/l	5	P	ND											
Vinyl chloride (VC)	ug/l	0.5	P	ND											
Xylenes (Total)	ug/l	1750		ND											
Others	-8.		Ľ												
1,4-Dioxane	ug/l	1	Ν	ND											
Perchlorate	ug/l	6	P	ND	2.6	3.6									
Surfactants	mg/l	0.5	S	ND											
Total Organic Carbon	mg/l			11	12	12	8.7	1.4	1.8	0.43	0.59	0.45	0.52	0.57	0.58
			I						-10		0.07			,	

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL (P): Primary MCL (S): Secondary MCL (N): Notification Level (ND): Not Detected (---): Not Analyzed

Page 11 of 22

Constituents			ype					Lom	ita #1				
Constituents	Units	MCL	MCL Type	Zor 4/15/2020	ne 1 8/25/2020	Zor 4/15/2020	ne 2 8/25/2020	Zor 4/15/2020	ne 3 8/25/2020	Zon 4/15/2020	ne 4 8/25/2020	Zoi 4/15/2020	ne 5 8/25/2020
General Minerals													
Alkalinity	mg/l			270	270	270	270	290	280	230	240	280	270
Anion Sum	meq/l			28	28	26	28	16	16	12	16	33	34
Bicarbonate as HCO3	mg/l			330	330	330	330	350	340	280	290	340	330
Boron	mg/l	1	Ν	0.55	0.54	0.51	0.57	0.44	0.45	0.36	0.48	0.68	0.72
Bromide	ug/l			7900	7700	6900	7500	2800	3000	2300	3800	9600	9600
Calcium, Total	mg/l			220	230	200	220	95	99	77	120	270	270
Carbon Dioxide	mg/l			8.6	11	8.6	11	7.2	7	3.6	7.5	7	14
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	2.3	ND	ND	ND
Cation Sum	meq/l	500	_	26	28	25	26	15	15	12	16	31	31
Chloride	mg/l	500	S	790	790	700	790	320	350	240	400	940	990
Fluoride Hydroxide as OH, Calculated	mg/l	2	Р	0.13 ND	0.13 ND	0.15 ND	0.14 ND	0.18 ND	0.19 ND	0.24 ND	0.2 ND	0.089 ND	0.093 ND
Iodide	mg/l			1700	1900	1200	170	690	730	540	960	2000	2200
	ug/l	45	D	ND	1900 ND	ND	ND	ND	ND	ND	900 ND	2000 ND	ND
Nitrate (as NO3) Nitrate as Nitrogen	mg/l mg/l	45 10	P P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	10	P	ND	ND								
Potassium, Total	mg/l	1	г	17	13	16	16	10	9.8	8.5	10	18	18
Sodium, Total	· ·			230	240	230	220	180	170	140	160	260	250
Sulfate	mg/l mg/l	500	S	4	19	230	220	32	31	4.3	7.2	200	25
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S	4	19	1700	1800	32 890	870	4.5	1000	2100	23
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND								
General Physical Properties	ing/1	10	1	цр	нD	пD	110	110	110	1.12	110	1,12	1,12
Apparent Color	ACU	15	s	10	ND	15	10	15	15	20	15	5	ND
Hardness (Total, as CaCO3)	mg/l		3	800	840	730	800	360	370	280	440	970	990
Lab pH	Units			7.8	7.7	7.8	7.7	7.9	7.9	8.1	7.8	7.9	7.6
Langelier Index - 25 degree	None			1.2	1.1	1.2	1.1	0.95	0.96	0.96	0.93	1.4	1.1
Odor	TON	3	S	2	2	4	1	2	2	2	1	1	1
Specific Conductance	umho/cn	1600	S	2600	2800	2500	2800	1500	1600	1200	1700	3300	3300
Turbidity	NTU	5	S	13	11	1.7	1.4	1.1	1.5	0.38	0.38	0.82	0.93
Metals		-	_			,						0.02	
Aluminum, Total	ug/l	1000	Р	ND	ND								
Antimony, Total	ug/l	6	Р	ND	ND								
Arsenic, Total	ug/l	10	Р	3.3	3.3	3	2.7	1.9	1.6	ND	1.5	3.5	3.7
Barium, Total	ug/l	1000	Р	140	140	120	140	60	63	51	80	170	170
Beryllium, Total	ug/l	4	Р	ND	ND								
Cadmium, Total	ug/l	5	Р	ND	ND								
Chromium, Total	ug/l	50	Р	ND	ND								
Hexavalent Chromium (Cr VI)	ug/l			0.022	ND	0.12	ND	0.18	0.038	0.13	ND	0.15	ND
Copper, Total	ug/l	1300	Р	ND	ND								
Iron, Total	mg/l	0.3	S	0.076	0.51	0.16	0.24	0.038	0.047	0.072	0.18	0.14	0.18
Lead, Total	ug/l	15	Р	ND	ND								
Magnesium, Total	None			61	64	57	61	29	29	22	35	73	76
Manganese, Total	ug/l	50	S	440	450	390	390	120	120	140	200	510	490
Mercury	ug/l	2	Р	ND	ND								
Nickel, Total	ug/l	100	Р	ND	ND								
Selenium, Total	ug/l	50	Р	17	14	15	14	5.3	5	ND	7.4	18	20
Silver, Total	ug/l	100	S	ND	ND								
Thallium, Total	ug/l	2	Р	ND	ND								
Zinc, Total	ug/l	5000	S	ND	ND								
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND	ND								
1,1-Dichloroethylene	ug/l	6	Р	ND	ND								
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND								
Benzene	ug/l	1	Р	ND	ND								
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND								
Chlorobenzene	ug/l	70	Р	ND	ND								
Chloromethane (Methyl Chloride)	ug/l	-		ND	ND								
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND								
Di-Isopropyl Ether	ug/l	200	-	ND	ND								
Ethylbenzene	ug/l	300	Р	ND	ND								
Ethyl Tert Butyl Ether	ug/l	150	-	ND	ND								
Freon 11	ug/l	150	Р	ND	ND								
Freon 113 Methodana Chlanida	ug/l	1200	P	ND	ND								
Methylene Chloride	ug/l	5	P	ND	ND								
MTBE	ug/l	13	P	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene Tert Amyl Methyl Ether	ug/l	100	Р	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene (PCE)	ug/l	5	P	ND ND	ND ND								
Tetrachloroethylene (PCE)	ug/l	5 150	P	ND ND	ND ND								
Total Trihalomethanes	ug/l ug/l	150 80	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene	•	80 10		ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND
Trichloroethylene (TCE)	ug/l ug/l	5	P P	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND								
Xylenes (Total)		1750	P	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
Others	ug/l	1/30	r	IND	IND	IND	IND	IND	ND	IND	IND	IND	ND
1,4-Dioxane	ug/l	1	N	ND	ND								
Perchlorate	ug/l	6	N P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Surfactants	mg/l	0.5	P S	0.17	0.12	0.1	ND	ND	ND	ND	ND	0.16	ND
Total Organic Carbon	mg/l mg/l	0.5	5	1.2	1.3	1.4	1.3	2.4	2.3	2	1.8	0.16	1
roun Organic Carbon	mg/1	1	<u> </u>	1.2	1.3	1.4	1.5	2.7	2.3	2	1.0	0.75	1

Page 12 of 22

Constituents			ype					Long B	each #3				
Constituents	Units	MCL	MCL Type	Zor 4/17/2020	ne 1 8/4/2020	Zor 4/17/2020	ne 2 8/4/2020	Zor 4/17/2020	ne 3 8/4/2020	Zo: 4/17/2020	ne 4 8/4/2020	Zoi 4/17/2020	ne 5 8/4/2020
General Minerals													
Alkalinity	mg/l			380	370	140 3.8	140	150	150	120	120 32	150	150
Anion Sum Bicarbonate as HCO3	meq/l mg/l			8 450	8 450	5.8 170	3.8	3.7 180	3.7 180	30 150	150	29 180	29 190
Boron	mg/l	1	N	0.36	0.36	0.12	0.12	0.12	0.12	0.11	0.12	0.11	0.12
Bromide	ug/l	-		230	230	110	120	170	160	8000	8200	7400	6900
Calcium, Total	mg/l			11	11	17	16	18	18	310	320	310	290
Carbon Dioxide	mg/l			2.3	4.6	ND	ND	ND	ND	3.1	3.1	3.7	4.9
Carbonate as CO3	mg/l			9.2	4.6	3.5	2.6	2.3	2.3	ND	ND	ND	ND
Cation Sum	meq/l	500		7.7	7.3	3.7	3.7	3.7	3.6	28	30	28	26
Chloride Fluoride	mg/l	500	S P	16 0.47	19 0.5	19 0.34	21 0.36	24 0.31	26 0.34	910 0.15	1000 0.15	850 0.16	870 0.17
Hydroxide as OH, Calculated	mg/l mg/l	2	Р	0.47 ND	ND	0.34 ND	0.30 ND	ND	0.34 ND	0.15 ND	0.15 ND	0.10 ND	0.17 ND
Iodide	ug/l			63	65	33	28	43	51	2000	2000	1900	1800
Nitrate (as NO3)	mg/l	45	Р	ND									
Nitrate as Nitrogen	mg/l	10	Р	ND									
Nitrite, as Nitrogen	mg/l	1	Р	ND									
Potassium, Total	mg/l			3.2	3.5	1.8	1.8	2	2.1	15	16	11	11
Sodium, Total	mg/l			160	150	60	60	57	56	140	140	140	140
Sulfate	mg/l	500	S	ND 450	ND 440	22	22	ND 210	ND	72	76	82	87
Total Dissolved Solid (TDS)	mg/l	1000 10	S	450 ND	440 ND	210 ND	230 ND	210 ND	220 ND	2000 ND	2200 ND	1800 ND	2000 ND
Total Nitrogen, Nitrate+Nitrite General Physical Properties	mg/l	10	Р	IND	ND	IND	ND						
Apparent Color	ACU	15	s	50	80	10	20	20	25	5	ND	5	ND
Hardness (Total, as CaCO3)	mg/l		-	41	41	54	51	57	57	1100	1100	1100	1000
Lab pH	Units			8.5	8.2	8.5	8.4	8.3	8.3	7.9	7.9	7.9	7.8
Langelier Index - 25 degree	None			0.75	0.46	0.47	0.41	0.41	0.32	1.1	1.1	1.2	1.1
Odor	TON	3	S	2	1	2	2	1	ND	2	2	2	2
Specific Conductance	umho/cn	1600	S	740	700	370	360	360	340	3000	3000	2900	2900
Turbidity	NTU	5	S	2	0.58	0.13	0.12	0.13	0.12	1.1	1.3	1.1	1.2
Metals	110/1	1000	p	ND									
Aluminum, Total Antimony, Total	ug/l ug/l	1000 6	P P	ND ND	ND								
Arsenic, Total	ug/l	10	P	ND	ND	ND	ND	ND	ND	3.4	3.2	3.8	3.1
Barium, Total	ug/l	1000	Р	8.9	9.1	14	14	7.1	7.4	100	110	150	150
Beryllium, Total	ug/l	4	P	ND									
Cadmium, Total	ug/l	5	Р	ND									
Chromium, Total	ug/l	50	Р	ND	1	ND							
Hexavalent Chromium (Cr VI)	ug/l			0.24	0.041	0.2	0.037	0.19	0.022	0.061	ND	0.048	ND
Copper, Total	ug/l	1300	Р	ND									
Iron, Total	mg/l	0.3	S	0.038	0.037	ND	ND	0.028	0.029	0.23	0.24	0.24	0.24
Lead, Total Magnesium, Total	ug/l None	15	Р	ND 3.3	ND 3.2	ND 2.7	ND 2.6	ND 3	ND 2.9	ND 82	ND 85	ND 70	ND 69
Manganese, Total	ug/l	50	S	12	12	7.2	7	8.4	8.6	240	250	300	290
Mercury	ug/l	2	P	ND									
Nickel, Total	ug/l	100	Р	ND									
Selenium, Total	ug/l	50	Р	ND	ND	ND	ND	ND	ND	16	16	16	13
Silver, Total	ug/l	100	S	ND									
Thallium, Total	ug/l	2	Р	ND									
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	89	ND	ND	ND	ND
Volatile Organic Compounds	/1	~	-	ND	ND		ND	ND	ND	ND	ND	ND	NID
1,1-Dichloroethane 1,1-Dichloroethylene	ug/l ug/l	5	P	ND ND									
1,2-Dichloroethane	ug/l	0.5	P P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	r P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND									
Chlorobenzene	ug/l	70	Р	ND									
Chloromethane (Methyl Chloride)	ug/l			ND									
cis-1,2-Dichloroethylene	ug/l	6	Р	ND									
Di-Isopropyl Ether	ug/l	202		ND									
Ethylbenzene Ethyl Tart Dutyl Ethan	ug/l	300	Р	ND									
Ethyl Tert Butyl Ether Freon 11	ug/l	150	P	ND ND									
Freon 11 Freon 113	ug/l ug/l	150 1200	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	ug/l	5	P	ND	ND ND								
MTBE	ug/l	13	P	ND									
Styrene	ug/l	100	Р	ND									
Tert Amyl Methyl Ether	ug/l			ND									
Tetrachloroethylene (PCE)	ug/l	5	Р	ND									
Toluene	ug/l	150	Р	ND									
Total Trihalomethanes	ug/l	80	Р	ND									
trans-1,2-Dichloroethylene	ug/l	10	Р	ND									
Trichloroethylene (TCE)	ug/l	5	P	ND ND	ND	ND ND	ND ND						
Vinyl chloride (VC) Xylenes (Total)	ug/l	0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Others	ug/l	1/30	r		1ND	שאו	ND	мD	IND .	ND	мD	ND	IND.
1,4-Dioxane	ug/l	1	Ν	ND									
Perchlorate	ug/l	6	P	ND									
Surfactants	mg/l	0.5	S	ND	0.1	0.19	0.13						
Total Organic Carbon	mg/l			8	7	1.5	1.3	2.2	2	0.78	0.74	0.78	0.76

Page 13 of 22

Constituents			ype			Long I	Beach #8		
Constituents	Units	MCL	MCL Type	Zone 1 6/23/2020	Zone 2 6/24/2020	Zone 3 6/23/2020	Zone 4 6/24/2020	Zone 5 6/23/2020	Zone 6 6/23/2020
General Minerals	-	F -1	2	0.20.2020	0.21.2020	0/20/2020	012112020	0.20.2020	0.20.2020
Alkalinity	mg/l			530	450	620	400	300	200
Anion Sum	meq/l			11	10	15	24	19	18
Bicarbonate as HCO3	mg/l	1		640	550	750	480	370	250
Boron Bromide	mg/l ug/l	1	Ν	1.2 350	0.76 440	1.3 710	4300	0.57 3400	0.18 1600
Calcium, Total	mg/l			7.7	9.4	10	4300	63	110
Carbon Dioxide	mg/l			3.3	3.6	4.9	7.9	6.1	8.2
Carbonate as CO3	mg/l			13	9	12	3.1	2.4	ND
Cation Sum	meq/l			10	9	13	21	17	17
Chloride	mg/l	500	S	22	35	88	590	460	500
Fluoride	mg/l	2	Р	0.78	0.79	0.55	0.22	0.18	0.48
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND
Iodide	ug/l			110	140	140	1100	810	81
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND 2.7	ND	ND 12	ND	ND 7.1
Potassium, Total Sodium, Total	mg/l mg/l			1.8 220	3.7 190	7.7 270	12 370	<u>9.6</u> 270	/.1
Sulfate	mg/l	500	S	ND	ND	ND	ND	ND	23
Total Dissolved Solid (TDS)	mg/l	1000		640	560	860	1300	1000	1100
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	ND	ND	ND	ND
General Physical Properties									
Apparent Color	ACU	15	S	500	400	300	100	70	25
Hardness (Total, as CaCO3)	mg/l	1		27	36	45	250	270	420
Lab pH	Units			8.5	8.4	8.4	8	8	7.7
Langelier Index - 25 degree	None			0.72	0.64	0.83	0.96	0.96	0.73
Odor	TON	3	S	8	8	8	2	2	8
Specific Conductance	umho/cn	1600	_	1000	940	1300	2500	2000	1900
Turbidity Matala	NTU	5	S	0.57	0.54	0.71	0.42	0.79	5.6
Metals		1000	n	21	ND	ND	ND	ND	ND
Aluminum, Total Antimony, Total	ug/l	1000		21 ND	ND ND	ND ND	ND ND	ND ND	ND ND
Arsenic, Total	ug/l ug/l	10	P P	1.4	ND	1.4	2.1	1.6	ND
Barium, Total	ug/l	1000		9.6	9.4	1.4	2.1	20	120
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	Р	ND	ND	1.3	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.32	0.29	0.26	0.2	0.3	0.025
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	0.19	0.15	0.21	0.18	0.24	0.76
Lead, Total	ug/l	15	Р	ND	ND	ND	ND	ND	ND
Magnesium, Total	None			2	3.1	4.9	33	27	36
Manganese, Total	ug/l	50	S	16	23	21	14	48	330
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND
Nickel, Total Selenium, Total	ug/l	100 50	P P	ND ND	ND ND	ND ND	ND 8.2	ND 5.8	ND ND
Silver, Total	ug/l ug/l	100	P S	ND	ND	ND	0.2 ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000		ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	8-	1	Ē					-	
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	Р	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloromothone (Mathul Chlorida)	ug/l	70	Р	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride) cis-1,2-Dichloroethylene	ug/l	6	P	ND ND	ND	ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene Di-Isopropyl Ether	ug/l	6	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	ug/l ug/l	300	Р	ND	ND ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500	1	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	Р	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND
Others	110/1	-	D.	ND	ND	ND	ND	ND	ND
1,4-Dioxane Perchlorate	ug/l	1	N	ND ND	ND ND	ND ND	ND ND	ND	ND
Surfactants	ug/l	6 0.5	P	ND	ND ND	ND	ND ND	0.11	ND ND
Total Organic Carbon	mg/l	0.5	S	25	20 ND	31	18	13	0.83
i otar Organic Cardon	mg/l	1	1	23	20	31	18	13	0.85

Page 14 of 22

Constituents			ype						Ma	nhattaı	n Beac	h #1					
Constituents	Units	MCL	MCL Type	Zoi 2/26/2020	ne 1 7/29/2020	Zor 2/27/2020	ne 2 7/28/2020	Zor 2/27/2020	ne 3 8/14/2020	Zor 2/27/2020	ne 4 7/28/2020	Zor 2/27/2020	ne 5 7/29/2020	Zot 2/27/2020	ne 6 7/29/2020	Zor 2/27/2020	ne 7 7/29/2020
General Minerals		1	E.														
Alkalinity	mg/l			560	580	440	450	910	910	480	490	120	130	160	160	140	140
Anion Sum	meq/l			130	130	49	51	22	22	10	11	410	420	140	140	10	11
Bicarbonate as HCO3	mg/l			690	700	530	540	1100	1100	580	590	150	160	190	200	170	170
Boron	mg/l	1	Ν	15	15	6.6	6.6	3.7	3.6	0.4	0.4	0.58	0.58	0.13	0.13	0.17	0.18
Bromide	ug/l			28000	28000	9600	10000	2300	2300	330	340	44000	45000	15000	16000	360	360
Calcium, Total	mg/l			50	49	33	33	17	16	27	26	1800	1900	920	980	52	51
Carbon Dioxide	mg/l			11	14	5.5	7	11	14	3.8	6.1	9.8	21	7.8	13	2.2	2.8
Carbonate as CO3	mg/l			4.5	3.6	5.4	4.4	11	9	9.5	6.1	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			110	110	43	42	20	22	11	10	360	380	130	140	10	10
Chloride	mg/l	500	S	4200	4200	1400	1500	120	120	37	36	13000	13000	4300	4400	130	140
Fluoride	mg/l	2	Р	0.72	0.79	0.58	0.57	0.37	0.35	0.21	0.22	0.085	0.087	0.15	0.15	0.27	0.25
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			6700	6600	2200	2600	910	620	110	130	180	240	29	32	37	37
Nitrate (as NO3)	mg/l	45	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	14
Nitrate as Nitrogen	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	3.1
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Potassium, Total	mg/l			30	20	16	17	28	30	11	10	170	180	54	54	5.6	5.7
Sodium, Total	mg/l			2500	2400	910	900	400	450	190	170	4300	4600	1400	1400	150	140
Sulfate	mg/l	500	S	ND	ND	ND	ND	ND	ND	ND	ND	1700	1800	580	620	180	190
Total Dissolved Solid (TDS)	mg/l	1000	S	7200	7000	2700	2700	1300	1300	600	590	28000	29000	11000	9500	650	630
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	3.1
General Physical Properties									[
Apparent Color	ACU	15	S	75	110	150	150	200	220	30	40	50	65	35	50	5	ND
Hardness (Total, as CaCO3)	mg/l			270	270	140	140	92	89	110	110	8400	8900	3400	3600	190	180
Lab pH	Units			8	7.9	8.2	8.1	8.2	8.1	8.4	8.2	7.4	7.1	7.6	7.4	8.1	8
Langelier Index - 25 degree	None			1.1	0.96	0.98	0.92	1.1	0.87	1.1	0.97	1.4	1.2	1.4	1.2	0.61	0.48
Odor	TON	3	S	8	8	8	8	4	2	2	2	2	2	2	1	1	1
Specific Conductance	umho/cm	1600	S	12000	13000	4800	5000	2000	1900	990	980	33000	34000	12000	13000	1000	1000
Turbidity	NTU	5	S	0.53	0.6	0.9	0.519	0.7	0.66	0.16	0.2	40	38	18	20	0.24	2.3
Metals		-	_														
Aluminum, Total	ug/l	1000	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	P	15	13	5.4	4.4	1.5	1.9	1.5	ND	7.5	22	2.6	5.7	4.7	4.9
Barium, Total	ug/l	1000	Р	680	720	200	200	92	98	44	43	200	230	220	220	27	31
Beryllium, Total	ug/l	4	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Total	ug/l	50	P	ND	ND	ND	ND	ND	2.6	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l	50	1	ND	ND	0.19	ND	0.28	0.11	0.14	ND	ND	ND	ND	ND	0.12	ND
Copper, Total	ug/l	1300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND
Iron, Total	mg/l	0.3	S	0.49	0.48	0.18	0.17	0.22	0.21	0.083	0.08	4.2	4.2	1.7	1.8	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	10		35	35	13	13	12	12	10	10	940	1000	260	280	15	14
Manganese, Total	ug/l	50	S	51	47	46	44	42	48	61	58	880	1100	1000	1100	70	76
Mercury	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	5.4	11	ND	ND
Selenium, Total	ug/l	50	Р	70	61	25	20	ND	ND	ND	ND	28	99	8.7	25	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	ug/1	5000	5	nD	nD	nD	TLD.	nD	TRD.	T(D)	TLD .	THE .	TRD .	ПЪ	нь	nD	TAD .
1.1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ug/l	1	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/l	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ug/l	70	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-Isopropyl Ether	ug/l	Ť	Ľ.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l	500		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l	100	F.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND
Vinyl chloride (VC)	,	0.5	P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	0.5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aylenes (Total) Others	ug/l	1/30	Р	IND	IND	IND	ND	ND	IND	IND	ND	UND	IND	ND	ND	IND	IND
1,4-Dioxane	110/1	1	31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ug/l	6	N	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1	ND 1.1
		. 0	Р	1 INIJ		IND	IND.	IND	IND	IND.	IND	UND .	IND	IND	IND	1	1.1
Perchlorate Surfactorite	ug/l				0.24	0.20	0.12	0.12	0.11	NID	ND	0.54	0.44	0.27	ND	ND	ND
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	0.44	0.34	0.28	0.13 28	0.12 44	0.11 39	ND 5.2	ND 4.7	0.54 1.4	0.44 ND	0.27 ND	ND ND	ND 0.94	ND 0.76

Page 15 of 22

Constituents			ype				PM-2 Poli	ice Station			
Constituents	Units	MCL	MCL Type	Zor 3/4/2020	ne 1 8/14/2020	Zo 3/4/2020	ne 2 8/14/2020	Zo: 3/4/2020	ne 3 8/14/2020	Zc 3/4/2020	ne 4 8/14/2020
General Minerals											
Alkalinity	mg/l			120	120	140	150	140	140	140	140
Anion Sum	meq/l			190 150	210	48	48 180	14	14	11	11
Bicarbonate as HCO3 Boron	mg/l mg/l	1	N	0.17	150 ND	180 0.22	0.22	0.31	160 0.3	170 0.34	170 0.32
Bromide	ug/l	1	IN	22000	21000	5200	5100	1000	680	630	490
Calcium, Total	mg/l			1100	1100	390	370	83	82	60	56
Carbon Dioxide	mg/l			7.8	7.8	12	7.4	3.5	2.6	2.8	2.2
Carbonate as CO3	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l			180	180	45	42	14	13	11	9.9
Chloride	mg/l	500	S	6300	6800	1600	1500	240	230	140	130
Fluoride	mg/l	2	Р	0.13	0.13	0.58	0.55	0.38	0.35	0.36	0.35
Hydroxide as OH, Calculated	mg/l			ND	ND	ND	ND	ND	ND	ND	ND
Iodide	ug/l			69	84	130	110	100	42	79	62
Nitrate (as NO3)	mg/l	45	Р	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Nitrate as Nitrogen	mg/l	10	P P	ND	ND	ND	ND	ND	ND	ND	ND
Nitrite, as Nitrogen Potassium, Total	mg/l	1	Р	110	80	22	18	8.9	8.2	7.3	6.6
Sodium, Total	mg/l mg/l			1700	1700	320	290	160	150	140	120
Sulfate	mg/l mg/l	500	S	710	700	76	290 75	210	240	200	210
Total Dissolved Solid (TDS)	mg/l	1000	S	15000	14000	3300	3300	830	880	670	660
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND	ND	ND	ND	ND	ND	ND	ND
General Physical Properties			-								
Apparent Color	ACU	15	S	10	ND	35	10	ND	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l			5000	5000	1500	1400	310	310	230	210
Lab pH	Units			7.5	7.5	7.4	7.6	7.9	8	8	8.1
Langelier Index - 25 degree	None			1.2	1.3	0.82	0.97	0.64	0.7	0.6	0.59
Odor	TON	3	S	1	ND	8	2	2	ND	2	ND
Specific Conductance		1600	S	17000	17000	4700	4400	1300	1400	1100	1000
Turbidity	NTU	5	S	1.9	0.81	14	6.7	ND	ND	ND	ND
Metals											
Aluminum, Total	ug/l	1000		ND	ND	ND	ND	ND	ND	ND	ND
Antimony, Total	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic, Total	ug/l	10	Р	9.7	8.7	5.6	5.4	2	1.8	1.2	1
Barium, Total	ug/l	1000	Р	270	270	320	300	36	37	36	33
Beryllium, Total	ug/l	4	Р	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Total	ug/l	5	Р	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Chromium, Total	ug/l	50	Р	ND ND	ND	ND	ND	0.087	ND	0.1	ND ND
Hexavalent Chromium (Cr VI)	ug/l	1300	Р	ND	3.5	ND	ND	0.087 ND	ND	0.1 ND	ND
Copper, Total Iron, Total	ug/l mg/l	0.3	r S	0.29	0.32	1.4	1.3	ND	ND	ND	ND
Lead, Total	ug/l	15	P	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	None	15	1	540	560	130	130	26	25	19	18
Manganese, Total	ug/l	50	S	390	410	790	700	150	130	61	58
Mercury	ug/l	2	P	ND	ND	ND	ND	ND	ND	ND	ND
Nickel, Total	ug/l	100	Р	ND	17	ND	5.8	ND	ND	ND	ND
Selenium, Total	ug/l	50	Р	52	38	12	8.4	ND	ND	ND	ND
Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds											
1,1-Dichloroethane	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Carbon Tetrachloride	ug/l ug/l	1 0.5	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	ug/l ug/l	70	P P	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane (Methyl Chloride)	ug/l	70	r	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	ND	ND	0.55	ND
Di-Isopropyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	300	Р	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Tert Butyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Freon 11	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	ug/l	1200		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/l	100	Р	ND	ND	ND	ND	ND	ND	ND	ND
Tert Amyl Methyl Ether	ug/l			ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/l	150	Р	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	ug/l	80	Р	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	ug/l	1750	Р	ND	ND	ND	ND	ND	ND	ND	ND
Others				ND	ND	ND	ND	ND	ND.	ND	
1,4-Dioxane	ug/l	1	N	ND	ND	ND	ND	ND	ND	ND	ND
Perchlorate	ug/l	6	P	ND 0.34	ND 0.3	ND 0.14	ND 0.15	ND	ND ND	ND	ND
Surfactants Total Organia Carbon	mg/l	0.5	S	0.34 ND			0.15	ND 1.2	ND 1.4	ND 1.2	ND 1.3
Total Organic Carbon	mg/l	I	L	IND	ND	1	1.2	1.2	1.4	1.3	1.3

Page 16 of 22

Constituents			ype				PM-3	Madrid			
	Units	MCL	MCL Type	Zo: 3/23/2020	ne 1 8/6/2020	Zoi 3/23/2020	ne 2 8/6/2020	Zor 3/23/2020	ne 3 8/6/2020	Zor 3/23/2020	ne 4 8/6/2020
General Minerals	/1			210	210	100	100	100	100	100	200
Alkalinity Anion Sum	mg/l meq/l			310	310	190 8.8	190 9.1	190 12	190 13	190 15	200 16
Bicarbonate as HCO3	mg/l			380	380	230	230	240	230	230	240
Boron	mg/l	1	Ν	0.34	0.35	0.16	0.17	0.19	0.2	0.36	0.39
Bromide	ug/l			130	120	990	960	1700	1700	1800	2100
Calcium, Total	mg/l			12	12	71	72	96	100	110	120
Carbon Dioxide	mg/l			3.9	5	4.7	4.7	5	4.7	6	7.8
Carbonate as CO3	mg/l			3.9	3.1	ND	ND	ND	ND	ND	ND
Cation Sum	meq/l	500		7.1	6.8	8.2	8.5	11	12	14	15
Chloride Fluoride	mg/l	500		25 0.34	26 0.29	180 0.34	190 0.29	270 0.35	300 0.31	310 0.36	350 0.32
Hydroxide as OH, Calculated	mg/l mg/l	2	Р	ND	ND	ND	ND	ND	ND	0.36 ND	ND
Iodide	ug/l			30	28	120	130	200	230	240	270
Nitrate (as NO3)	mg/l	45	Р	ND							
Nitrate as Nitrogen	mg/l	10	Р	ND							
Nitrite, as Nitrogen	mg/l	1	Р	ND							
Potassium, Total	mg/l			12	13	4.4	4.5	5.6	6	6.5	6.9
Sodium, Total	mg/l			120	120	68	71	93	100	140	140
Sulfate	mg/l	500		ND	ND	ND	ND	17	20	95	96
Total Dissolved Solid (TDS)	mg/l	1000		400	380 ND	540	490	800 ND	780	890	920 ND
Total Nitrogen, Nitrate+Nitrite General Physical Properties	mg/l	10	Р	ND							
Apparent Color	ACU	15	S	30	35	ND	ND	3	ND	15	20
Hardness (Total, as CaCO3)	mg/l	15	3	67	67	260	270	360	370	400	440
Lab pH	Units			8.2	8.1	7.9	7.9	7.9	7.9	7.8	7.7
Langelier Index - 25 degree	None			0.42	0.31	0.7	0.69	0.84	0.82	0.7	0.69
Odor	TON	3	S	2	ND	8	ND	2	ND	2	2
Specific Conductance	umho/cn	1600	S	650	620	860	880	1200	1200	1500	1600
Turbidity	NTU	5	S	0.43	0.56	0.73	0.82	3.4	2	4.4	5.7
Metals											
Aluminum, Total	ug/l	1000		ND							
Antimony, Total	ug/l	6	Р	ND							
Arsenic, Total Barium, Total	ug/l	10	Р	ND 19	ND 19	ND 30	ND 28	ND 7(ND 81	8.8 80	8.4 87
Beryllium, Total	ug/l ug/l	1000	P P	ND	ND	30 ND	28 ND	76 ND	ND	80 ND	87 ND
Cadmium, Total	ug/l	5	P	ND							
Chromium, Total	ug/l	50	P	ND							
Hexavalent Chromium (Cr VI)	ug/l		-	0.12	0.041	0.071	ND	0.094	ND	0.026	ND
Copper, Total	ug/l	1300	Р	ND							
Iron, Total	mg/l	0.3	S	0.038	0.038	0.17	0.28	0.057	0.077	0.51	0.67
Lead, Total	ug/l	15	Р	ND							
Magnesium, Total	None			9	9	20	21	28	29	31	33
Manganese, Total	ug/l	50	S	21	21	57	52	60	60	330	360
Mercury	ug/l	2	Р	ND							
Nickel, Total Selenium, Total	ug/l	100 50		ND ND							
Silver, Total	ug/l ug/l	100	P S	ND	ND	ND	ND	ND	ND	ND	ND
Thallium. Total	ug/l	2	P	ND							
Zinc, Total	ug/l	5000		ND							
Volatile Organic Compounds	-81		_								
1,1-Dichloroethane	ug/l	5	Р	ND							
1,1-Dichloroethylene	ug/l	6	Р	ND	ND	ND	ND	1.4	1.6	0.69	0.54
1,2-Dichloroethane	ug/l	0.5	Р	ND							
Benzene	ug/l	1	Р	ND							
Carbon Tetrachloride	ug/l	0.5	Р	ND							
Chlorobenzene Chloromethana (Mathyl Chlorida)	ug/l	70	Р	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND
Chloromethane (Methyl Chloride) cis-1.2-Dichloroethylene	ug/l ug/l	6	Р	ND	ND ND	ND	ND	0.6	0.6	ND 3.2	ND 2.5
Di-Isopropyl Ether	ug/l	0	r	ND	ND	ND	ND	0.6 ND	ND	3.2 ND	2.3 ND
Ethylbenzene	ug/l	300	Р	ND							
Ethyl Tert Butyl Ether	ug/l	200	Ė	ND							
Freon 11	ug/l	150	Р	ND							
Freon 113	ug/l	1200		ND							
Methylene Chloride	ug/l	5	Р	ND							
MTBE	ug/l	13	Р	ND							
Styrene	ug/l	100	Р	ND							
Tert Amyl Methyl Ether	ug/l	-		ND							
Tetrachloroethylene (PCE) Toluene	ug/l	5	P	ND ND							
Total Trihalomethanes	ug/l ug/l	150 80	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2-Dichloroethylene	ug/l	10	P	ND							
Trichloroethylene (TCE)	ug/l	5	P	ND	ND	ND	ND	ND	ND	0.92	0.87
Vinyl chloride (VC)	ug/l	0.5	P	ND							
Xylenes (Total)	ug/l	1750		ND							
Others	Ĩ										
1,4-Dioxane	ug/l	1	Ν	ND							
Perchlorate	ug/l	6	Р	ND							
		0.5		ND							
Surfactants Total Organic Carbon	mg/l mg/l	0.5	S	3.3	2.7	0.65	0.62	0.94	0.77	1.4	0.9

MCL: Maximum Contaminant Level, bold value indicates concentration exceeds MCL (P): Primary MCL (S): Secondary MCL (N): Notification Level (ND): Not Detected (---): Not Analyzed

Page 17 of 22

General Minorah I I I I I I I I Backmane ar HGO2 mg1 I S 0.16 0.16 180 18	Constituents			ype				PM-4 N	Mariner			
Akalany mgl l 200 200 150 </th <th>Constituents</th> <th>Units</th> <th>MCL</th> <th>MCL Type</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ne 4 8/16/2020</th>	Constituents	Units	MCL	MCL Type								ne 4 8/16/2020
Alon Sman mol 3 i 6 5.9 2.90 340 8.6 8.7 11 Bachama Ki, C. mol 1 1 6.16 0.16 0.00												
Stackward art (0.5) mp] a 310 310 190 190 190 190 190 200 230 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.55 <												210
Soon mp1 1 N 0.16 0.16 0.23 ND 0.23 0.24 0.23 Glaum, Land mp1 - 72 72 73 1500 1500 140 380 Glaum, Land mp1 - 72 72 1500 1500 140 38 734 Calor Sam mp1 2 73 750 750 750 750 750 73 160 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td></td<>												11
Nomice org1 P< P P P P P P P P P P P P< P< <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>260</td>			1									260
Calcium, Fuel mgl i 2 27 1500 1500 141 39 74 Carbon back mgl i 3.2 2.3 8.8 7.4 ND ND ND ND ND ND 2.1 Carbon back mgl 1.2 4.4 ND ND </td <td></td> <td></td> <td>1</td> <td>N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.23 430</td>			1	N								0.23 430
Cakon Exakor mg1 i 3.2 4.3.3 4.7.4 ND ND NJ A.3.4 Cakon ison mg1 0 5.7 7.7.0 7.10 A.6.7 ND ND ND ND ND A.3.4 Cakon ison mg1 0 1 0.5.7 7.7.0 7.10 A.6.7 A.3.4 A.3.4 OUT ND												430
Caboar as COD mg1 C 3.2 4 ND ND ND ND ND 2.1 Caboar Sam mg1 30 6 30 23 7100 7700 77 77 8.0 8.0 10 Caboar Sam mg1 30 7 0.00 0.00 700 70 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.7</td>												2.7
Calob Sum medigl e 5.7 5.7 5.70 700 8.6 8.8 11 Florida mp1 2 P 0.34 0.34 0.05 0.1 0.43 0.43 0.25 Florida mp1 1 P 0.34 0.34 0.05 0.1 0.43 0.43 0.25 Florida mp1 1 P 0.34 0.34 0.35 0.1 0.43 0.43 0.25 0.5 0.43 0.44 0.43 0.43 0.44 0.43 0.44 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44<												2.7
Chorike mg1 50 8 1 100 Bronsie mg1 2 7 0.34 0.043 0.048 0.048 0.043 0.048 0.053 Stokade 0.01 0.02 ND												10
Flanck mg1 2 P 0.34 0.34 0.035 0.11 0.038 0.048 0.23 Idedic Marka (a. M20, and m.g.) N ND ND <th< td=""><td></td><td></td><td>500</td><td>s</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>140</td></th<>			500	s								140
Injensica 201, Calcularia ng/ i ND												0.25
Sadac up1 c 67 57 70 66 18 15 63 Narte (a NO) ng1 1 F ND			_	-								ND
Ninne (a N0); mp1 45 ND		· ·					70			15		55
Nine is sintegen mp1 10 ND	Nitrate (as NO3)	<u> </u>	45	Р								ND
Peasam real no 7 80 51 5.3 5.1 6.4 Salfac mg1 50 7.5 7.4 2.400 2.30 130 130 Salfac mg1 100 \$ ND ND 9.00 170 160 150 Toal Disolved Solut(TD) mg1 10 P ND				Р	ND	ND	ND	ND	ND	ND	ND	ND
Saluar, Total mp1 s 75 74 2400 2200 130 120 130 Saliafs mp1 150 s ND ND 1800 1700 150 160 150 Tail binsops, Nicate-Yanits mp1 10 p ND	Nitrite, as Nitrogen	mg/l	1	Р	ND	ND	ND	ND	ND	ND	ND	ND
Salifac mp1 150 s ND ND 950 950 770 160 150 Toal Nackod Sol (TDS) mp1 100 s ND	Potassium, Total	mg/l			6.9	7	80	51	5.3	5.1	6.4	6.3
Total Disolved Skall (TDS) mp1 100 s 340 330 18000 17000 S20 540 6660 General Physical Properties I I ND ND </td <td>Sodium, Total</td> <td>mg/l</td> <td></td> <td></td> <td>75</td> <td>74</td> <td>2400</td> <td>2200</td> <td>130</td> <td>120</td> <td>130</td> <td>110</td>	Sodium, Total	mg/l			75	74	2400	2200	130	120	130	110
Total Ningen, Nintae-Ninte mp 1 P ND ND ND ND ND ND Agaaran Color ACU 15 5 100 ND ND ND 15 10 5 Indress (Col.1, a CaCO) mp 1 100 100 5700 150 100 20 Lab plf Units 4 8.3 8.3 7.5 7.6 8.2 8.2 8.1 Langetir Infack 25 degre Not 100 7.0 1.6 0.50 0.38 0.07 Obar Totom 100 <td< td=""><td></td><td>mg/l</td><td></td><td>S</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>150</td></td<>		mg/l		S								150
General Physical Properties * Image Imag		mg/l	1000	S								670
Apparent Color ACU 15 10 5 LahopH Unix I III0 110 5700 150 140 270 Langler Indx-25 Gare Non I 0.71 0.76 1.5 1.6 0.56 0.58 0.97 Okor TON 3 S 1 1 2 ND 1 1 ND Specific Conductance mbloof [600 S 550 1500 15000 20000 830 840 1100 Turbiding NTU 5 8 0.19 0.15 1.4 1.5 0.47 0.47 0.85 0.81 Marimor, Total ug1 10 P ND		mg/l	10	Р	ND	ND	ND	ND	ND	ND	ND	ND
Hadness Crocl. as CxC03 mg/l 1 110 170 5700 150 140 270 Lapgler Index -25 degree Nore I 8.2 8.3 7.5 7.6 8.2 8.2 8.1 Specific Conductance mbo/ce (500) 8 1 1 2 ND 1 1 ND Specific Conductance mbo/ce (500) 8 550 530 150 1.4 1.5 0.47 0.35 0.83 Metab	v 1											
			15	S	-					-	-	ND
Largier Index - 25 degrey None										-		270
Odar OA S I I I P <td>*</td> <td></td> <td>8.2</td>	*											8.2
Specific Conductance mbord 1600 S 550 530 1900 2000 830 840 1100 Metak P N 0.15 1.4 1.5 0.47 0.53 0.81 Metak P ND ND ND ND ND ND ND Auminum, Toal ugl 0.7 P ND ND ND ND ND ND Asenic, Toal ugl 0.9 P ND ND ND ND ND ND ND Barium, Toal ugl 0.9 P ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>												1
Turbidity NTU 5 s 0.19 0.15 1.4 1.5 0.47 0.33 0.81 Aturnam, Total ugl 1000 r ND			-	_								1
Metaš - ND												1000
Aluminan, Total ug1 1000 P ND ND ND ND ND ND ND Astamory, Total ug1 1 P ND ND ND ND ND ND Barium, Total ug1 100 P ND ND ND ND ND Gamium, Total ug1 50 P ND		NTU	5	S	0.19	0.15	1.4	1.5	0.47	0.35	0.81	0.46
Autimory, Total ug/l 10 ND ND ND ND ND Astenic, Total ug/l 1000 P 20 21 240 220 68 66 38 Berrium, Total ug/l 4 P ND N		4	1000		ND	ND	ND	ND	ND	ND	ND	ND
Assnic., Total ugl 100 P ND ND 13 6.8 ND ND ND Barium, Total ugl 10 P 20 21 240 220 68 66 58 Berylium, Total ugl 5 P ND ND <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		~										ND
Barium, Total ugl 1000 p 2.0 2.1 2.40 2.20 6.8 6.6 5.8 Beryllum, Total ugl 5. p ND												ND
Berylinn, Total ugl 4 P ND		<u> </u>										ND
Cadmium, Total ug1 5 r ND												60 ND
Chronium, Total ug1 50 P ND ND ND ND ND ND ND ND Capper, Total ug1 1300 P ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>												ND
Hexavalart Chromium (Cr VI) ug1 130 P ND ND ND ND 0.14 0.037 0.052 Copper, Total mg1 0.3 s 0.056 0.053 0.2 ND												ND
Copper, Total ug1 1300 P ND	/	,	50	г								ND
		<u> </u>	1200	D								ND
		,										0.13
Magnesim, Total Nore Imagnesim, Total Nore		^o										ND
Marganese, Total ug/l 26 p 29 30 1100 1000 33 29 77 Mercury ug/l 20 p ND ND <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></t<>			10									20
			50	S								74
Nickel, Total ug/l 100 p ND ND ND 16 ND ND ND Selenium, Total ug/l 50 p ND		<u> </u>		_	ND		ND	ND		ND	ND	ND
Silver, Total ug/l 100 s ND							ND		ND	ND		ND
Thallium, Totalug/l2PNDNDNDNDNDNDNDNDNDNDZinc, Totalug/l5000sND </td <td></td> <td>~</td> <td></td> <td>Р</td> <td>ND</td> <td>ND</td> <td>70</td> <td>28</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>		~		Р	ND	ND	70	28	ND	ND	ND	ND
Zinc, Total ug/l 5000 s ND	Silver, Total	ug/l	100	S	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds r	Thallium, Total	ug/l	2	Р	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethaneug/l5PNDNDNDNDNDNDNDNDND1,1-Dichloroethyleneug/l0.5PND </td <td>Zinc, Total</td> <td>ug/l</td> <td>5000</td> <td>S</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Zinc, Total	ug/l	5000	S	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethyleneug/l6PNDNDNDNDNDNDNDND1,2-Dichloroethaneug/l0.5PNDNDNDNDNDNDNDNDBenzeneug/l1PNDNDNDNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDNDNDChlorobenzeneug/l70PNDNDNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l6PNDNDNDNDNDNDNDNDDi-lsopropyl Etherug/l6PNDNDNDNDNDNDNDNDEthyl Tetra Butyl Etherug/l300PNDNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDNDNDKethylene Chlorideug/l5PNDNDNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDNDNDNDTetraAlloroethylene (PCE)ug/l150PNDNDNDNDNDNDNDNDNDTetraAlloroethyleneug/l160 <td< td=""><td>Volatile Organic Compounds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Volatile Organic Compounds											
1.2-Dichloroethane ug/l 0.5 P ND ND <td></td> <td>ug/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		ug/l										ND
Benzeneug/l1PNDNDNDNDNDNDNDNDCarbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDNDNDChlorobenzeneug/l0.5PNDNDNDNDNDNDNDNDNDChlorobenzeneug/l0PNDNDNDNDNDNDNDNDChloroberthane (Methyl Chloride)ug/l6PNDNDNDNDNDNDNDNDDi-Isopropl Etherug/l6PNDNDNDNDNDNDNDNDEthylbenzeneug/l150PNDNDNDNDNDNDNDNDNDEthylenzeneug/l150PNDNDNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDNDNDMethylenc Chlorideug/l13PNDNDNDNDNDNDNDNDNDStyreneug/l13PNDNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l15PNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l150PNDNDN	/ /	<u> </u>										ND
Carbon Tetrachlorideug/l0.5PNDNDNDNDNDNDNDNDNDChlorobenzeneug/l70PNDNDNDNDNDNDNDNDNDChlorobenzeneug/l0PNDNDNDNDNDNDNDNDNDChloromethane (Methyl Chloride)ug/l6PNDNDNDNDNDNDNDNDNDDi-Isopropyl Etherug/l6PNDNDNDNDNDNDNDNDEthylDenzeneug/l300PNDNDNDNDNDNDNDNDEthylTert Butyl Etherug/l150PNDNDNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDNDNDMthylene Chlorideug/l150PNDNDNDNDNDNDNDNDStyreneug/l13PNDNDNDNDNDNDNDNDNDTett Amyl Methyl Etherug/l150PNDNDNDNDNDNDNDNDTotar Trialaomethanesug/l150PNDNDNDNDNDNDNDNDTotar Trialaomethanesug/l150P <td< td=""><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></td<>		,										ND
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-									ND
Chloromethane (Methyl Chloride) ug/l ug/l NDNDNDNDNDNDNDNDNDcis-1,2-Dichloroethylene ug/l 6PNDNDNDNDNDNDNDNDDi-Isopropyl Ether ug/l ug/l NDNDNDNDNDNDNDNDEthylbenzene ug/l ug/l 300PNDNDNDNDNDNDNDNDEthyl Tert Buryl Ether ug/l ug/l 150PNDNDNDNDNDNDNDFreon 11 ug/l 1200 PNDNDNDNDNDNDNDNDFreon 113 ug/l 1200 PNDNDNDNDNDNDNDNDMethylene Chloride ug/l 13 PNDNDNDNDNDNDNDMTBE ug/l 100 PNDNDNDNDNDNDNDNDStyrene ug/l 100 PNDNDNDNDNDNDNDNDTert Amyl Methyl Ether ug/l 150 PNDNDNDNDNDNDNDNDTotaloreethylene ug/l 150 PNDNDNDNDNDNDNDNDNDTotal Trialomethanes ug/l 150 PNDNDND<		5										ND
cis-1,2-Dichloroethyleneug/l6PNDNDNDNDNDNDNDNDNDNDDi-Jsopropyl Etherug/l300PNDNDNDNDNDNDNDNDNDEthylbenzeneug/l300PNDNDNDNDNDNDNDNDEthyl Tert Butyl Etherug/l300PNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMthylenc Chlorideug/l5PNDNDNDNDNDNDNDNDMTBEug/l100PNDNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l150PNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l150PNDNDNDNDNDNDNDNDTotal Trihalomethyleneug/l160PNDNDNDNDNDNDNDNDTotal Trihalomethyleneug/l160PNDNDNDNDNDNDNDND			70	Р								ND
Di-Isopropyl Etherug/lNDNDNDNDNDNDNDNDEthylbenzeneug/l300PNDNDNDNDNDNDNDNDEthyl Tert Butyl Etherug/l150PNDNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDStyreneug/l130PNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l150PNDNDNDNDNDNDNDTotal crinkalomethylene (PCE)ug/l5PNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l160PNDNDNDNDNDNDNDNDNDTotal Trihalomethylene (TCE)ug/l5PNDNDNDNDNDNDNDNDTotal Trihalomethyleneug/l10PNDNDNDNDNDNDNDVinyl chloride (VC)ug/l10P <td></td> <td>,</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		,		-								ND
Ethylbenzeneug/l300PNDNDNDNDNDNDNDNDNDEthyl Tert Butyl Etherug/l150PNDNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5PNDNDNDNDNDNDNDNDTolueneug/l150PNDNDNDNDNDNDNDNDNDTrichloroethylene (TCE)ug/l160PNDNDNDNDNDNDNDNDVinyl chloride (VC)ug/l15PNDNDNDNDNDNDNDNDVingl chloride (VC)ug/l0.5PND	, ,	,	6	Р								ND
Ethyl Tert Butyl Etherug/lNDNDNDNDNDNDNDNDNDFreon 11ug/l150PNDNDNDNDNDNDNDNDFreon 11ug/l1200PNDNDNDNDNDNDNDNDFreon 113ug/l1200PNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDTert achloroethylene (PCE)ug/l5PNDNDNDNDNDNDNDTolarenug/l150PNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l160PNDNDNDNDNDNDNDNDTrichloroethylene (TCE)ug/l5PNDNDNDNDNDNDNDNDVinyl chloride (VC)ug/l10PNDNDNDNDNDNDNDVinyl chloride (VC)ug/l05PNDNDNDNDNDNDNDVinyl chloride (VC)ug/l00NDNDND<			200									ND
Freen 11 ug/l 150 P ND			300	Р								ND
Freen 113ug/l1200PNDNDNDNDNDNDNDNDNDMethylene Chlorideug/l5PNDNDNDNDNDNDNDNDMTBEug/l13PNDNDNDNDNDNDNDNDStyreneug/l100PNDNDNDNDNDNDNDTert Amyl Methyl Etherug/l0PNDNDNDNDNDNDTertachloroethylene (PCE)ug/l5PNDNDNDNDNDNDTotal Trihalomethanesug/l150PNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDNDTrichloroethyleneug/l10PNDNDNDNDNDNDNDTotal Trihalomethanesug/l10PNDNDNDNDNDNDNDTrichloroethyleneug/l10PNDNDNDNDNDNDNDVinyl chloride (VC)ug/l0.5PNDNDNDNDNDNDNDVinyl chloride (VC)ug/l1750PNDNDNDNDNDNDNDNDNDVinyl chloride (VC)ug/l1750PNDND <t< td=""><td></td><td></td><td>150</td><td>B</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND ND</td></t<>			150	B								ND ND
Methylene Chloride ug/l 5PNDNDNDNDNDNDNDNDMTBE ug/l 13PNDNDNDNDNDNDNDNDStyrene ug/l 100PNDNDNDNDNDNDNDNDTert Amyl Methyl Ether ug/l ug/l NDNDNDNDNDNDNDTert Amyl Methyl Ether ug/l Ug/l SPNDNDNDNDNDNDTetrachloreethylene (PCE) ug/l 150PNDNDNDNDNDNDNDToluene ug/l 150PNDNDNDNDNDNDNDTotal Trihalomethanes ug/l 80PNDNDNDNDNDNDNDTrichloreethylene ug/l 10PNDNDNDNDNDNDNDTrichloreethylene (TCE) ug/l 5PNDNDNDNDNDNDNDVinyl chloride (VC) ug/l 0.5PNDNDNDNDNDNDNDNDVinglenkores (Total) ug/l 1750PNDNDNDNDNDNDNDNDNDOthers </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND ND</td>		,										ND ND
MTBEug/l13PNDNDNDNDNDNDNDNDStyreeug/l100PNDNDNDNDNDNDNDNDTert Amyl Methyl Etherug/lug/lNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5PNDNDNDNDNDNDNDTolueneug/l150PNDNDNDNDNDNDNDTotal Trihalomethanesug/l80PNDNDNDNDNDNDTrichloroethyleneug/l10PNDNDNDNDNDNDTrichloroethyleneug/l5PNDNDNDNDNDNDVinyl chloride (VC)ug/l0.5PNDNDNDNDNDNDNDVingles (Total)ug/l1750PNDNDNDNDNDNDNDNDOthers4444444444		<u> </u>		-								ND
Styreneug/l100PNDNDNDNDNDNDNDNDNDTert Amyl Methyl Etherug/lVNDNDNDNDNDNDNDNDTetrachloroethylene (PCE)ug/l5PNDNDNDNDNDNDNDNDTolueneug/l150PNDNDNDNDNDNDNDNDTotal Trihalomethanesug/l160PNDNDNDNDNDNDNDTrichloroethyleneug/l10PNDNDNDNDNDNDNDTrichloroethylene (TCE)ug/l5PNDNDNDNDNDNDNDVinyl chloride (VC)ug/l0.5PNDNDNDNDNDNDNDXylenes (Total)ug/l1750PNDNDNDNDNDNDNDOthers </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>												ND
Tert Amyl Methyl Ether ug/l ND N		5										ND
Tetrachloroethylene (PCE) ug/l 5 P ND			100	Ľ								ND
Toluene ug/l 150 P ND		,	5	Р								ND
Total Trihalomethanes ug/l 80 P ND ND<		<u> </u>										ND
trans-1,2-Dichloroethylene ug/l 10 P ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>												ND
Trichloroethylene (TČE) ug/l 5 P ND												ND
Vinyl chloride (VC) ug/l 0.5 P ND ND </td <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td>		5										ND
Xylenes (Total) ug/l 1750 P ND		0										ND
Others Ot		<u> </u>										ND
		-61	2,50	† ·	1.12			1.12		1.12		
1,4-Dioxane ug/l 1 N ND ND ND ND ND ND ND ND ND	1,4-Dioxane	ug/l	1	Ν	ND	ND	ND	ND	ND	ND	ND	ND
rechlorate ug/1 6 P ND ND ND ND ND ND ND ND ND			6									ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· ·										ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ŷ										1.1

Page 18 of 22

Centeral Minerals mg/l 6 meq/l 6 meq/l 6 meq/l 16 17 18 19 9.2 9.2 6.8 6.8 3.3 3.4 Bicarbonate as HCO3 mg/l 1 8.30 830 1100 1100 510 360 360 240 230 Bronn mg/l 1 N 2.7 2.6 2 2 0.37 0.18 0.10 1.11 1.1 1.1 0.6 6.4 2.3 7.5 7.8 6 Carbonate as CO3 mg/l 0.8 1.00 1.10 1.4 1.5 2.8 2.9 3.1 3.1 720 750 F <th>220 2 13 2 270 2 0.19 0 690 0 93 4 ND 11 13 12 0.33 0 ND 11 65 1 ND 11 64 140 190 750 750 7 ND 11 320 2 8 0.99 0 1 1200 1 0.1 0 ND 1</th> <th>6 88/5/2022 13 270 0.19 90 4.4 ND 12 160 0.33 ND ND ND ND ND ND ND ND ND ND ND ND ND</th>	220 2 13 2 270 2 0.19 0 690 0 93 4 ND 11 13 12 0.33 0 ND 11 65 1 ND 11 64 140 190 750 750 7 ND 11 320 2 8 0.99 0 1 1200 1 0.1 0 ND 1	6 88/5/2022 13 270 0.19 90 4.4 ND 12 160 0.33 ND ND ND ND ND ND ND ND ND ND ND ND ND
Alkalinity mg/l l 680 680 900 910 420 300 300 200 190 Anion Sum mg/l 1 16 17 18 19 92 92 6.8 6.8 33 34 Bicarbonate as HCO3 mg/l 1 N 2.7 2.6 2 2 0.37 0.37 0.18	13 270 2 0.19 0 690 6 93 4.4 ND 1 13 170 0.33 0 ND 1 65 ND ND 1 440 1 140 1 190 750 750 7 ND 1 1200 1 1200 1 ND 1 ND 1	13 270 0.19 690 90 4.4 ND 12 160 0.33 ND ND ND ND 6.4 130 ND 6.4 130 740 ND 310 8 0.98 ND 1200
Anion Sum meg1 1 16 17 18 19 9.2 2.6 6.8 6.8 33 34 Beardonate as HCO3 mg1 1 830 1100 1100 510 500 360 240 230 Boron mg1 1 1600 1600 210 170 120 170 180 2100 2100 Calcum, Total mg1 1 11 11 11 42 6.6 3.7 5.9 7.8 6 Carbon Dixolde mg1 2 6.6 6.8 6.8 11 11 6.6 4.2 3.7 2.3 ND ND Carbon Dixolde as OL, Calculated mg1 2 0.62 0.6 0.3 0.31 0.3 0.18 0.19 10 Floatda mg1 4 7 0.62 0.6 0.3 0.27 0.27 0.31 0.3 0.18 0.18 0.19 E	13 270 2 0.19 0 690 6 93 4.4 ND 1 13 170 0.33 0 ND 1 65 ND ND 1 440 1 140 1 190 750 750 7 ND 1 1200 1 1200 1 ND 1 ND 1	13 270 0.19 690 90 4.4 ND 12 160 0.33 ND ND ND ND 6.4 130 ND 6.4 130 740 ND 310 8 0.98 ND 1200
Bacabonate as HCO3 mgl I 830 830 1100 1100 510 360 360 240 230 Baron mgl I 1600 1600 210 170 270 0.37 0.37 0.18 0.17 0.26 0.37 0.26 0.37 0.26 0.37 0.27 0.27 0.31 0.18 0.19 0.18 0.19 100 110 14 15 23 28 61 61 720	270 2 0.19 0 690 0 93 1 4.4 1 ND 1 13 1 170 0 0.33 0 ND 1 ND 1 ND 1 ND 1 140 1 190 1 750 1 ND 1 320 2 8 0.99 0.1 1 1200 1 ND 1 ND 1	270 0.19 690 4.4 ND 12 160 0.33 ND ND ND ND 6.4 130 ND ND 8 0.98 8 0.98 8 0.98 0.200 0.200 0.200 0.200 0.200 0.019 0.0000000000
	0.19 0 690 6 93 6 13 13 170 6 0.33 0 0.34 0 10 1 65 1 ND 1 64 1 190 750 750 7 ND 1 320 2 8 0.99 0 1 1200 1 0.1 0 ND 1	0.19 690 90 4.4 ND 12 160 0.33 ND 73 ND ND ND 6.4 130 ND 740 ND 310 8 0.98 8 0.98 20.98 0.98 1200
Bromide ug/l I 1600 1600 210 170 260 170 180 2100 2100 Calcium, Total mg/l I 14 13 7.6 7.3 14 14 27 240 240 Carbon Dioxide mg/l 6.8 6.8 11 11 42 6.6 3.7 2.9 7.8 6 Carbonate as CO3 mg/l 16 16 18 17 9.3 8.8 6.6 6.9 31 31 Chiorde mg/l 2 0.62 0.6 0.3 0.31 0.27 0.27 0.31 0.3 0.18 0.19 Hydroxide as OH, Calculated mg/l 0 0.6 50 85 81 140 120 75 64 19 23 Nitrate as Nitrogen mg/l 1 P ND ND <td>690 6 93 4.4 ND 13 170 0.33 0.33 0 ND 1 65 1 ND 1 65 1 ND 1 64 1 190 750 750 7 ND 1 320 2 8 0.99 0.99 0 1 10 ND 1 1200 1 ND 1 ND 1 ND 1 1200 1 ND 1 ND 1</td> <td>690 90 4.4 ND 12 160 0.33 ND ND ND ND 130 180 740 ND 310 8 0.98 8 0.98 ND 1200</td>	690 6 93 4.4 ND 13 170 0.33 0.33 0 ND 1 65 1 ND 1 65 1 ND 1 64 1 190 750 750 7 ND 1 320 2 8 0.99 0.99 0 1 10 ND 1 1200 1 ND 1 ND 1 ND 1 1200 1 ND 1 ND 1	690 90 4.4 ND 12 160 0.33 ND ND ND ND 130 180 740 ND 310 8 0.98 8 0.98 ND 1200
	93 4.4 ND 1 13 13 170 10 0.33 0 ND 1 65 ND ND 1 64 1 140 1 750 7 ND 1 320 2 8 0.99 0.99 0 1200 1 0.1 0 ND 1	90 4.4 ND 12 160 0.33 ND 73 ND ND 6.4 130 180 ND 6.4 130 ND 8 0.98 ND 1200
Carbon Dixide mg/l l 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 6.6 3.7 5.9 7.8 6 Carbonate ac O3 mg/l 0 6 6.6 6.8 11 11 6.6 4.2 3.7 2.3 ND NDD Chloride mgl 100 110 14 15 2.8 2.9 3.1 3.1 720 750 Floarde mgl 2 0.6 0.3 0.31 0.27 0.27 0.31 0.3 0.18 0.19 ND	4.4 ND 13 170 0.33 0 ND 1 65 ND ND 1 ND 1 0.44 1 190 1 750 1 ND 1 320 2 8 0.99 0.1 0 ND 1 ND 1	4.4 ND 12 160 0.33 ND 73 ND ND 0.4 130 180 740 ND 310 8 0.98 ND 1200
Carbonate as CO3 mg/l l 6.8 6.8 11 11 6.6 4.2 3.7 2.3 ND ND Cation Sum meq/l i 16 16 18 17 9.3 8.8 6.6 6.9 31 31 Fluoride mg/l 2 P 0.62 0.6 0.3 0.31 0.27 0.27 0.31 0.3 0.18 0.19 Hydroxide as OH, Calculated mg/l 1 P ND	ND 11 13 170 170	ND 12 160 0.33 ND 73 ND ND ND ND ND ND MO ND 310 8 0.98 ND 1200
	13 170 170 0.33 C ND 1 65 ND 1 1 65 1 1 ND 1 1 64 140 1 190 750 7 ND 1 1 320 2 8 0.99 0 1 1200 1 1 ND 1 1 ND 1 1	12 160 0.33 ND ND ND 0.4 130 180 740 ND 310 8 0.98 ND 1200
	0.33 00 ND 10 65 ND 11 ND 11 ND 11 6.4 140 190 750 ND 11 320 2 8 0.99 0.99 1 1200 1 0.1 0.1 0 ND 12 ND 12 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.33 ND 73 ND ND 6.4 130 180 740 ND 310 8 0.98 ND 1200
Hydroxide as OH, Calculated mg/l ND	ND 1 65 1 ND 1 ND 1 64 1 140 1 190 1 750 1 ND 1 320 2 8 0.99 1200 1 0.1 0 ND 1 ND 1	ND 73 ND ND 6.4 130 180 740 ND 310 8 0.98 ND 1200
	65 ND ND ND ND 140 190 750 ND ND ND 1320 8 0.99 1200 1 0.1 C ND	73 ND ND 6.4 130 180 740 ND 310 8 0.98 ND 1200
Nitrate (as NO3) mg/l 45 P ND	ND 1 ND 1 ND 1 6.4 1 140 1 750 7 ND 1 320 2 8 0.99 0.1 0 ND 1	ND ND 6.4 130 740 ND 310 8 0.98 ND 1200
Nitrate as Nitrogen mg/l 10 P ND ND <td>ND 1 ND 1 6.4 1 140 1 90 750 750 7 ND 1 320 2 8 0.99 0.99 0 1 10 0.1 0 ND 1 ND 1</td> <td>ND ND 6.4 130 180 740 ND 310 8 0.98 ND 1200</td>	ND 1 ND 1 6.4 1 140 1 90 750 750 7 ND 1 320 2 8 0.99 0.99 0 1 10 0.1 0 ND 1 ND 1	ND ND 6.4 130 180 740 ND 310 8 0.98 ND 1200
Nitrite, as Nitrogen mg/l I p ND ND <td>ND 1 6.4 9 140 9 190 750 750 7 ND 1 320 2 8 0.99 0.1 0 ND 1 0.1 0 ND 1</td> <td>ND 6.4 130 180 740 ND 310 8 0.98 ND 1200</td>	ND 1 6.4 9 140 9 190 750 750 7 ND 1 320 2 8 0.99 0.1 0 ND 1 0.1 0 ND 1	ND 6.4 130 180 740 ND 310 8 0.98 ND 1200
Potassium, Total mg/l 15 15 12 12 16 16 11 12 12 11 Sodium, Total mg/l 340 320 400 370 170 160 91 95 320 310 Sulfate mg/l 500 5 ND ND ND ND ND ND ND 420 420 Total Dissolved Solid (TDS) mg/l 10 p ND	6.4 140 140 190 150 7 ND 10 320 2 8 0 0.99 0 1 10 1200 1 0.1 0 ND 10 ND 10	6.4 130 180 740 ND 310 8 0.98 ND 1200
Sodium, Total mg/l I 340 320 400 370 170 160 91 95 320 310 Sulfate mg/l 500 s ND <	140 190 190 750 750 7 ND 11 320 2 8 0.99 0.1 0.1 0.1 0.1 ND 11 ND 11	130 180 740 ND 310 8 0.98 ND 1200
Sulfate mg/l 500 s ND	190 750 7 ND 1 320 2 8 0.99 0.1 1 1200 1 ND 1 ND 1 ND 1 ND 1 ND 1	180 740 ND 310 8 0.98 ND 1200
Total Dissolved Solid (TDS) mg/l 1000 s 970 990 1000 1100 470 510 360 360 1800 2000 Total Nitrogen, Nitrate+Nitrite mg/l 10 P ND	750 750 750 750 750 750 750 750 750 750	740 ND 310 8 0.98 ND 1200
Total Nitrogen, Nitrate+Nitrite mg/l 10 P ND	ND I ND I 320 I 8 I 0.99 O 1 I 1200 I 0.1 O ND I	ND ND 310 8 0.98 ND 1200
General Physical Properties 0 1<	ND 11 320 2 8 0.99 1 1 1200 1 0.1 0 ND 1	ND 310 8 0.98 ND 1200
Apparent ColorACU15s 200200500880457020 NDNDNDNDHardness (Total, as CaCO3)mg/l615741406665120120840840Lab pHUnits8.18.18.18.28.28.38.18.287.77.8Langelier Index - 25 degreeNone0.750.720.70.720.720.530.690.571.11OdorTON3s 4 2 8 2222ND2NDSpecific Conductanceimho/cn 1600s1600150016001500860800650610 31002900 TurbidityNTU5s0.710.750.580.830.320.220.150.120.320.41MetalsAltiminum, Totalug/l100PNDNDNDNDNDNDNDNDNDArsenic, Totalug/l100P98962323262621228988Beryllium, Totalug/l4PNDNDNDNDNDNDNDNDNDNDNDCadmium, Totalug/l50P1.61.72.43.4ND<	320 2 8 0.99 0 1 1 1 1200 1 0.1 0 ND 1 1 1	310 8 0.98 ND 1200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	320 2 8 0.99 0 1 1 1 1200 1 0.1 0 ND 1 1 1	310 8 0.98 ND 1200
Lab pHUnits8.18.18.28.28.38.18.287.77.8Langelier Index - 25 degreeNone0.750.720.70.720.720.530.690.571.11OdorTON3s4282222ND2NDSpecific Conductanceimho/cn11600s1160015001500150086080065061031002900TurbidityNTU5s0.710.750.580.830.320.220.150.120.320.41Metals	8 0.99 1 1200 1 0.1 0.1 0.1 0.1 0.1 0 0 ND	8 0.98 ND 1200
Odor TON 3 s 4 2 8 2 2 2 2 ND 2 ND Specific Conductance imho/cn 1600 s 1600 1500 1600 1500 860 800 650 610 3100 2900 Turbidity NTU 5 s 0.71 0.75 0.58 0.83 0.32 0.22 0.15 0.12 0.32 0.41 Metals 0.32 0.41 0.32 0.41 Aluminum, Total ug/l 1000 P ND ND<	1 1 1200 1 0.1 0 ND 1 ND 1	ND 1200
Specific Conductance imho/cn 1600 s 1600 1500 1600 1500 860 800 650 610 3100 2900 Turbidity NTU 5 s 0.71 0.75 0.58 0.83 0.32 0.22 0.15 0.12 0.32 0.41 Metals	1200 1 0.1 0 ND 1 ND 1	1200
Turbidity NTU 5 s 0.71 0.75 0.58 0.83 0.32 0.22 0.15 0.12 0.32 0.41 Metals ug/l 1000 P ND	0.1 0 ND 1 ND 1	
Metals Image: Constraint of the state of th	ND 1 ND 1	0.13
Aluminum, Totalug/l1000PNDNDNDNDNDNDNDNDNDNDNDNDAntimony, Totalug/l6PND	ND 1	
Antimony, Total ug/l 6 P ND	ND 1	
Arsenic, Total ug/l 10 P 1.1 1 3.3 3.6 ND ND ND ND 1.6 1.6 1.6 Barium, Total ug/l 1000 P 98 96 23 23 26 26 21 22 89 88 Beryllium, Total ug/l 4 P ND ND <td< td=""><td></td><td>ND</td></td<>		ND
Barium, Total ug/l 1000 P 98 96 23 23 26 26 21 22 89 88 Beryllium, Total ug/l 4 P ND	ND I	ND
Beryllium, Total ug/l 4 P ND		ND
Cadmium, Total ug/l 5 P ND		160 ND
Chromium, Total ug/l 50 P 1.6 1.7 2.4 3.4 ND 1.2 ND ND ND ND Hexavalent Chromium (Cr VI) ug/l 0.39 0.13 0.7 0.44 0.24 0.062 0.2 0.026 0.077 ND Copper, Total ug/l 1300 P ND ND <td></td> <td>ND</td>		ND
Hexavalent Chromium (Cr VI) ug/l 0.39 0.13 0.7 0.44 0.24 0.062 0.2 0.026 0.077 ND Copper, Total ug/l 1300 P ND ND ND 2.3 ND ND<		ND
Copper, Total ug/l 1300 P ND ND ND 2.3 ND		ND
Iron, Total mg/l 0.3 s 0.2 0.2 0.31 0.3 0.045 0.048 0.029 0.031 0.084 0.084 Lead, Total ug/l 15 P ND		ND
Lead, Total ug/l 15 P ND		ND
Magnesium, Total None 6.3 6 5.4 5.2 7.5 7.3 13 13 58 59 Manganese, Total ug/l 50 s 45 44 28 28 35 36 23 24 220 190 Mercury ug/l 2 P ND ND<		ND
Mercury ug/l 2 P ND ND <t< td=""><td>21</td><td>21</td></t<>	21	21
	120	110
Nickel Total ug/1 100 P ND ND ND ND ND ND ND ND ND ND ND		ND
		ND
Selenium, Total ug/l 50 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
Silver, Total ug/1 100 s ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
Thallium, Total ug/l 2 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
Zinc, Total ug/l 5000 s ND	ND 1	ND
Unate of game Compounds ug/l 5 P ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1	ND
1_1 -Dichloroothylene ug/l 6 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
1/2 Definition of $1/2$ and $1/2$		ND
1_2 = Demolectuate $gr = 0.5$ $r = 10$ $r = 1$		ND
Carbon Tetrachloride ug/l 0.5 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
Chlorobenzene ug/l 70 P ND ND ND ND ND ND ND ND ND ND ND ND	ND 1	ND
Chloromethane (Methyl Chloride) ug/l ND		ND
cis-1,2-Dichloroethylene ug/l 6 P ND ND ND ND ND ND ND ND ND ND ND		ND
Di-Isopropyl Ether ug/l ND ND <td></td> <td>ND</td>		ND
Ethylbenzene ug/l 300 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
Ethyl Tert Butyl Ether ug/l ND N		ND
Free II ug/l 150 P ND		ND
		ND
Methylene Chloride ug/l 5 P ND		ND ND
MIBE ug/l 13 P ND		ND
Styrene ug/l ND ND ND ND ND ND ND ND Tert Amyl Methyl Ether ug/l ND ND ND ND ND ND ND ND		ND
Tetrachloroethylene (PCE) ug/l 5 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ND
Total Trihalomethanes $ug/1$ 80 P ND ND ND ND ND ND ND ND ND ND ND ND ND		ND
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ND
$\frac{1}{12} \frac{1}{12} \frac$		ND
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ND
Xylenes (Total) ug/l 1750 P ND		ND
Others		
1,4-Dioxane ug/l l N ND ND ND ND ND ND ND ND ND ND ND ND N		ND
Perchlorate ug/l 6 P ND	ND 1	ND
Surfactants mg/l 0.5 s 0.14 ND		ND
Total Organic Carbon mg/l 37 31 40 22 6.5 6 2.9 2.8 1.2 1.1	ND 1 ND 1	1.1

Page 19 of 22

Constituents			ype					PM	-6 Madı	rona Ma	arsh				
Constituents	Units	MCL	MCL Type	Zor 3/27/2020	ne 1 8/13/2020	Zor 3/27/2020	ne 2 8/13/2020	Zor 3/27/2020	ne 3 8/13/2020	Zor 3/27/2020	ne 4 8/13/2020	Zo: 3/27/2020	ne 5 8/13/2020	Zor 3/27/2020	ne 6 8/13/2020
General Minerals	_		~												
Alkalinity	mg/l			410	410	120	120	120	110	240	230	160	160	170	170
Anion Sum	meq/l			65	68	88	87	210	210	6.8	7	50	51	10	10
Bicarbonate as HCO3	mg/l	1		500	500	150	150	150	140	280	280	200	200	200	200
Boron	mg/l	1	Ν	0.73 6500	0.73 6600	0.55	0.54	0.26 26000	ND 25000	0.24 320	0.24 330	0.37 4300	0.38 4100	0.17 380	0.18 370
Bromide Calcium, Total	ug/l mg/l			270	280	220	220	1200	1200	20	21	230	240	580 66	68
Carbon Dioxide	mg/l			10	13	3.1	4.9	6.2	1200	2.9	2.9	6.5	5.2	3.3	2.6
Carbonate as CO3	mg/l			2.6	2	ND	ND	ND	ND	2.9	2.9	ND	ND	ND	ND
Cation Sum	meq/l			57	58	77	79	200	190	6.5	6.6	42	44	10	9.8
Chloride	mg/l	500	S	2000	2100	3000	3000	7200	7200	73	81	1400	1400	150	150
Fluoride	mg/l	2	Р	0.36	0.35	0.07	0.08	0.087	0.095	0.5	0.47	0.15	0.14	0.26	0.25
Hydroxide as OH, Calculated	mg/l			ND	ND										
Iodide	ug/l			170	140	550	480	250	220	69	56	92	70	62	52
Nitrate (as NO3)	mg/l	45	Р	ND	ND										
Nitrate as Nitrogen	mg/l	10	Р	ND	ND										
Nitrite, as Nitrogen	mg/l	1	Р	ND	ND										
Potassium, Total	mg/l			36	34	52	48	110	100	5.7	5.9	20	18	5.4	5.6
Sodium, Total	mg/l			600	620	1300	1300	1600	1600	99	100	560	600	120	110
Sulfate	mg/l	500	S	9.4	2	ND	ND	74	68	ND	ND	390	390	140	140
Total Dissolved Solid (TDS)	mg/l	1000		4100	3200	5600 ND	4800 ND	17000	14000	400 ND	400 ND	3000	2800 ND	610 ND	600 ND
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND										
General Physical Properties Apparent Color	ACU	15	S	200	300	5	ND	15	ND	15	ND	20	ND	5	ND
Hardness (Total, as CaCO3)	mg/l	15	5	1500	1500	960	ND 960	6200	6100	99	100	870	900	240	250
Lab pH	Units			7.9	7.8	7.9	7.7	7.6	7.3	8.2	8.2	7.7	7.8	240	8.1
Langelier Index - 25 degree	None		-	1.6	1.5	0.96	0.79	1.4	1.1	0.54	0.51	0.91	1	0.69	0.76
Odor	TON	3	S	200	1.5	1	ND	200	200	1	2	2	2	2	2
Specific Conductance	umho/cn	1600		6100	6100	8800	8400	19000	18000	670	640	4500	4400	980	940
Turbidity	NTU	5	S	2.4	3.4	0.78	0.34	0.17	0.28	0.47	0.14	4.1	4.8	0.71	0.49
Metals											-		-		
Aluminum, Total	ug/l	1000	Р	ND	ND										
Antimony, Total	ug/l	6	Р	ND	ND										
Arsenic, Total	ug/l	10	Р	4.1	2.7	4.8	4.7	9.7	16	ND	ND	3.4	3.2	1.8	1.8
Barium, Total	ug/l	1000	Р	750	720	640	560	2800	2800	28	24	130	120	18	18
Beryllium, Total	ug/l	4	Р	ND	ND										
Cadmium, Total	ug/l	5	Р	ND	ND										
Chromium, Total	ug/l	50	Р	ND	1.6	ND	ND								
Hexavalent Chromium (Cr VI)	ug/l			0.25	ND	0.084	ND	ND	ND	0.16	ND	ND	ND	0.08	ND
Copper, Total	ug/l	1300		ND	ND	ND	ND	4.3	3.3	ND	ND	ND	ND	ND	ND
Iron, Total	mg/l	0.3	S	ND	ND	0.13	ND	ND	ND	0.074	0.078	0.74	0.73	0.21	0.22
Lead, Total	ug/l	15	Р	ND	ND										
Magnesium, Total	None	50		200	200	100	100	790	760	12	13	73	74	18	19
Manganese, Total	ug/l	50	S	10	8.5	180	180	78	75	65	61	510	490	92	86
Mercury Nickel, Total	ug/l	2 100	P P	ND ND	ND ND	ND ND	ND ND	ND 13	ND 16	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Selenium, Total	ug/l ug/l	50	P	18	13	25	23	52	50	ND	ND	8.7	6.4	ND	ND
Silver, Total	ug/l	100	r S	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l	2	P	ND	ND										
Zinc, Total	ug/l	5000		ND	ND										
Volatile Organic Compounds	ug/1	2000		112		112	112					112	112		112
1,1-Dichloroethane	ug/l	5	Р	ND	ND										
1,1-Dichloroethylene	ug/l	6	Р	ND	ND										
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND										
Benzene	ug/l	1	Р	ND	ND										
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND										
Chlorobenzene	ug/l	70	Р	ND	ND										
Chloromethane (Methyl Chloride)	ug/l			ND	ND										
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND										
Di-Isopropyl Ether	ug/l	200		ND	ND										
Ethylbenzene	ug/l	300	Р	ND	ND										
Ethyl Tert Butyl Ether	ug/l	150		ND	ND										
Freen 11	ug/l	150		ND	ND										
Freon 113 Methylene Chloride	ug/l	1200 5		ND ND	ND ND										
MTBE	ug/l ug/l	13	P P	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Styrene	ug/l	100	P	ND	ND										
Tert Amyl Methyl Ether	ug/l	100	r.	ND	ND										
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND										
Toluene	ug/l	150	P	ND	ND										
Total Trihalomethanes	ug/l	80	P	ND	ND										
trans-1,2-Dichloroethylene	ug/l	10	P	ND	ND										
Trichloroethylene (TCE)	ug/l	5	P	ND	ND										
Vinyl chloride (VC)	ug/l	0.5	P	ND	ND										
Xylenes (Total)	ug/l	1750		ND	ND										
Others	0.		1							· · ·				· · ·	
others		1	Ν	ND	ND										
1,4-Dioxane	ug/l	1	IN	ND	TID										
	ug/l ug/l	6	P	ND	ND										
1,4-Dioxane	ÿ	1 6 0.5							ND 0.47 ND	ND ND	ND ND				ND ND

Page 20 of 22

Constituents			ype					Westch	ester #1				
Constituents	Units	MCL	MCL Type	Zor 3/19/2020	ne 1 7/31/2020	Zor 3/19/2020	ne 2 7/31/2020	Zor 3/19/2020	ne 3 7/31/2020	Zo: 3/19/2020	ne 4 7/31/2020	Zor 3/19/2020	ne 5 7/31/2020
General Minerals													
Alkalinity	mg/l			630	660	530	540	430	430	340	350	280	280
Anion Sum	meq/l			16	17	13	13	11	11	10	10	9.4	9.4
Bicarbonate as HCO3	mg/l	1		770	800	650	660	530	530	420	420	350	350
Boron	mg/l	1	Ν	1.2	1.3	0.76	0.83	0.37	0.38	0.22	0.22	0.21	0.22
Bromide	ug/l			650	700	470	510	390	390	340	350	320	330
Calcium, Total	mg/l			59	58	30	31	56	56	70	71	63	63
Carbon Dioxide Carbonate as CO3	mg/l			13	10	8.5	8.6 5.4	8.7 3.4	8.7 3.4	8.7	5.5 3.4	7.2 ND	7.2 ND
	mg/l			5 16	6.5 16	5.3 12	12	3.4	3.4	2.2 9.9	5.4 10		9.1
Cation Sum Chloride	meq/l	500	S	96	100	71	76	64	66	9.9 65	68	8.9 68	9.1
Fluoride	mg/l mg/l	2	P	0.27	0.26	0.26	0.25	0.24	0.25	0.26	0.26	0.31	0.31
Hydroxide as OH, Calculated	mg/l	2	г	ND	ND								
Iodide	ug/l			180	170	130	150	110	83	69	80	63	66
Nitrate (as NO3)	mg/l	45	Р	ND	ND								
Nitrate as Nitrogen	mg/l	10	Р	ND	ND								
Nitrite, as Nitrogen	mg/l	1	P	ND	ND								
Potassium, Total	mg/l	-	-	14	15	16	16	11	11	9.3	9.5	7.1	7.3
Sodium, Total	mg/l			240	250	200	200	130	120	90	92	83	86
Sulfate	mg/l	500	S	33	30	ND	ND	15	15	77	78	83	84
Total Dissolved Solid (TDS)	mg/l	1000	S	910	960	670	710	580	590	580	580	500	520
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND	ND								
General Physical Properties	6												
Apparent Color	ACU	15	S	250	350	60	90	20	25	10	10	10	10
Hardness (Total, as CaCO3)	mg/l			250	240	140	150	230	230	290	290	260	260
Lab pH	Units			8	8.1	8.1	8.1	8	8	7.9	8.1	7.9	7.9
Langelier Index - 25 degree	None			1.2	1.3	0.97	0.96	1	1	0.93	1.1	0.8	0.83
Odor	TON	3	S	2	2	2	1	1	2	2	ND	1	2
Specific Conductance	umho/cm	1600	S	1500	1500	1200	1200	1000	1000	940	930	860	890
Turbidity	NTU	5	S	0.45	0.63	0.53	0.2	0.53	0.3	0.42	0.26	0.66	0.57
Metals													
Aluminum, Total	ug/l	1000	Р	ND	ND								
Antimony, Total	ug/l	6	Р	ND	ND								
Arsenic, Total	ug/l	10	Р	ND	ND								
Barium, Total	ug/l	1000	Р	93	97	110	150	74	74	76	82	66	70
Beryllium, Total	ug/l	4	Р	ND	ND								
Cadmium, Total	ug/l	5	Р	ND	ND								
Chromium, Total	ug/l	50	Р	1.4	1.6	ND	ND	ND	ND	ND	ND	ND	ND
Hexavalent Chromium (Cr VI)	ug/l			0.2	0.24	0.12	0.053	0.068	ND	0.074	ND	0.054	ND
Copper, Total	ug/l	1300	Р	ND	ND								
Iron, Total	mg/l	0.3	S	0.18	0.19	0.12	0.13	0.24	0.24	0.13	0.14	0.27	0.27
Lead, Total	ug/l	15	Р	ND	ND								
Magnesium, Total	None	50		24	24	17	17	23	23	28	28	24	24
Manganese, Total	ug/l	50	S	100	93 ND	44	54	140	140	110	110	130	130
Mercury	ug/l	2	Р	ND ND	ND ND								
Nickel, Total	ug/l	100 50	Р	ND	ND								
Selenium, Total Silver, Total	ug/l	100	P	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Thallium, Total	ug/l ug/l	2	S P	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Total	ug/l	5000	F S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Volatile Organic Compounds	ug/1	5000	3	ND	ND								
1.1-Dichloroethane	ug/l	5	Р	ND	ND								
1,1-Dichloroethylene	ug/l	6	P	ND	ND								
1,2-Dichloroethane	ug/l	0.5	Р	ND	ND								
Benzene	ug/l	1	P	ND	ND								
Carbon Tetrachloride	ug/l	0.5	Р	ND	ND								
Chlorobenzene	ug/l	70	P	ND	ND								
Chloromethane (Methyl Chloride)	ug/l			ND	ND								
cis-1,2-Dichloroethylene	ug/l	6	Р	ND	ND								
Di-Isopropyl Ether	ug/l			ND	ND								
Ethylbenzene	ug/l	300	Р	ND	ND								
Ethyl Tert Butyl Ether	ug/l			ND	ND								
Freon 11	ug/l	150	Р	ND	ND								
Freon 113	ug/l	1200	Р	ND	ND								
Methylene Chloride	ug/l	5	Р	ND	ND								
MTBE	ug/l	13	Р	ND	ND								
Styrene	ug/l	100	Р	ND	ND								
Tert Amyl Methyl Ether	ug/l			ND	ND								
Tetrachloroethylene (PCE)	ug/l	5	Р	ND	ND								
Toluene	ug/l	150	Р	ND	ND								
Total Trihalomethanes	ug/l	80	Р	ND	ND								
trans-1,2-Dichloroethylene	ug/l	10	Р	ND	ND								
Trichloroethylene (TCE)	ug/l	5	Р	ND	ND								
Vinyl chloride (VC)	ug/l	0.5	Р	ND	ND								
Xylenes (Total)	ug/l	1750	Р	ND	ND								
Others													
1,4-Dioxane	ug/l	1	Ν	ND	ND								
											NID		ND
Perchlorate	ug/l	6	Р	ND	ND								
	ug/l mg/l mg/l	6 0.5	P S	ND ND 20	ND ND 22	ND ND 8.4	ND ND 7.8	ND ND 3.3	ND ND 3	ND ND 1.7	ND ND 1.6	ND ND 1.2	ND ND 1.2

Page 21 of 22

Constituents			ype					Wilmin	gton #1				
Constituents	Units	MCL	MCL Type	Zor 2/24/2020	ne 1 8/5/2020	Zor 2/24/2020	ne 2 8/5/2020	Zor 2/24/2020	ne 3 8/5/2020	Zo: 2/24/2020	ne 4 8/5/2020	Zor 2/24/2020	ne 5 8/5/2020
General Minerals													
Alkalinity	mg/l			140	140	160	160	190	190	130	140	140	160
Anion Sum	meq/l			7.6	12	24	25	34	34	13	13	13	14
Bicarbonate as HCO3	mg/l	1	N	160 0.26	170 0.25	190 0.2	200	230 0.3	240 0.3	160 0.22	160 0.22	170 0.2	190 0.2
Boron Bromide	mg/l ug/l	1	IN	2400	2500	3000	3000	4300	4200	860	870	780	930
Calcium, Total	mg/l			65	66	170	180	180	180	57	58	88	94
Carbon Dioxide	mg/l			2.1	ND	3.9	3.3	7.5	5	2.6	2.1	2.8	3.9
Carbonate as CO3	mg/l			ND									
Cation Sum	meq/l			11	11	22	23	32	31	12	12	13	13
Chloride	mg/l	500	S	170	330	650	710	1000	1100	270	270	220	260
Fluoride	mg/l	2	Р	0.13	0.13	0.063	0.071	0.064	0.071	0.14	0.16	0.14	0.14
Hydroxide as OH, Calculated	mg/l			ND									
Iodide	ug/l			810	770	420	440	460	480	27	32	51	70
Nitrate (as NO3)	mg/l	45	Р	ND									
Nitrate as Nitrogen	mg/l	10	Р	ND ND									
Nitrite, as Nitrogen Potassium, Total	mg/l	1	Р	8.9	9.3	9 9	8.5	12	ND 11	5.7	6.1	6.5	7.3
	mg/l			8.9 140	9.3	240	240	420	410	180	0.1 180	6.5 140	140
Sodium, Total Sulfate	mg/l mg/l	500	s	ND	ND	110	100	420	25	150	140	140	140
Total Dissolved Solid (TDS)	mg/l mg/l	1000	S	680	710	110	1600	2100	23	770	790	770	800
Total Nitrogen, Nitrate+Nitrite	mg/l	1000	P	ND									
General Physical Properties		1.5											
Apparent Color	ACU	15	S	ND	ND	5	ND	5	ND	5	ND	ND	ND
Hardness (Total, as CaCO3)	mg/l		_	250	250	600	630	640	630	220	230	340	360
Lab pH	Units			8.1	8.2	7.9	8	7.7	7.9	8	8.1	8	7.9
Langelier Index - 25 degree	None			0.68	0.78	0.92	1	0.9	1	0.53	0.6	0.71	0.73
Odor	TON	3	S	100	200	100	2	200	200	8	4	100	200
Specific Conductance	umho/en	1600	S	1200	1200	2500	2400	3400	3500	1300	1300	1200	1300
Turbidity	NTU	5	S	0.14	0.28	0.21	0.21	0.12	0.24	0.12	0.18	0.22	0.27
Metals													
Aluminum, Total	ug/l	1000	Р	ND									
Antimony, Total	ug/l	6	Р	ND									
Arsenic, Total	ug/l	10	Р	1	ND	1.2	1.2	2	2.8	ND	ND	ND	ND
Barium, Total	ug/l	1000	Р	12	13	13	12	29	27	24	24	67	78
Beryllium, Total	ug/l	4	Р	ND									
Cadmium, Total	ug/l	5	Р	ND									
Chromium, Total	ug/l	50	Р	ND	ND ND	ND 0.093	ND ND	ND 0.058	ND ND	ND 0.11	ND ND	ND 0.29	ND
Hexavalent Chromium (Cr VI)	ug/l	1200	Р	0.11 ND	ND ND	0.093 ND	ND ND	0.058 ND	ND	0.11 ND	ND	0.29 ND	ND ND
Copper, Total Iron, Total	ug/l mg/l	1300 0.3	P S	ND	ND	0.042	0.043	ND	ND	ND	ND	ND	0.036
Lead, Total	ug/l	15	P	ND	ND	0.042 ND	ND						
Magnesium, Total	None	15	1	21	21	43	45	46	44	20	20	28	30
Manganese, Total	ug/l	50	S	25	25	21	20	6.1	5.4	10	9.5	29	38
Mercury	ug/l	2	Р	ND									
Nickel, Total	ug/l	100	Р	ND									
Selenium, Total	ug/l	50	Р	ND	ND	6.4	5.7	10	95	ND	ND	ND	8.3
Silver, Total	ug/l	100	S	ND									
Thallium, Total	ug/l	2	Р	ND									
Zinc, Total	ug/l	5000	S	ND									
Volatile Organic Compounds													
1,1-Dichloroethane	ug/l	5	Р	ND									
1,1-Dichloroethylene	ug/l	6	Р	ND									
1,2-Dichloroethane	ug/l	0.5	Р	ND									
Benzene	ug/l	1	Р	ND									
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	0.5 70	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane (Methyl Chloride)	ug/l ug/l	70	۲	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р	ND									
Di-Isopropyl Ether	ug/l	0	r	6	7	19	19	6.1	8.1	ND	ND	ND	3.9
Ethylbenzene	ug/l	300	Р	ND	, ND	ND							
Ethyl Tert Butyl Ether	ug/l	2.50		ND									
Freon 11	ug/l	150	Р	ND									
Freon 113	ug/l	1200	Р	ND									
Methylene Chloride	ug/l	5	Р	ND									
MTBE	ug/l	13	Р	ND	ND	ND	ND	ND	ND	2.1	2.7	26	22
Styrene	ug/l	100	Р	ND									
Tert Amyl Methyl Ether	ug/l			ND									
Tetrachloroethylene (PCE)	ug/l	5	Р	ND									
Toluene	ug/l	150	Р	ND									
Total Trihalomethanes	ug/l	80	Р	ND									
trans-1,2-Dichloroethylene	ug/l	10	Р	ND									
Trichloroethylene (TCE)	ug/l	5	Р	ND									
Vinyl chloride (VC)	ug/l	0.5	Р	ND									
Xylenes (Total)	ug/l	1750	Р	ND									
Others													
1,4-Dioxane	ug/l	1	Ν	ND	-	ND		ND		ND		ND	
Perchlorate	ug/l	6	Р	ND									
Surfactants	mg/l	0.5	S	0.48	0.43	0.6	0.48	0.46	0.49	0.12	0.12	0.32	0.45
Total Organic Carbon	mg/l			3.1	2.6	2.9	2.4	2.1	2	1.8	1.7	2.7	3.2

Page 22 of 22

Constituents			ype					Wilmin	igton #2				
Constituents	Units	MCL	MCL Type	Zor 2/25/2020	ne 1 8/4/2020	Zor 2/25/2020	ne 2 8/4/2020	Zor 2/25/2020	ne 3 8/4/2020	Zor 2/25/2020	ne 4 8/4/2020	Zoi 2/25/2020	ne 5 8/4/2020
General Minerals													
Alkalinity	mg/l			260	260	480	490	140	150	270	280	160	160
Anion Sum	meq/l			15	16	26	27	14	15	10	11	68	69
Bicarbonate as HCO3	mg/l			310	320	580	600	170	180	320	330	190	200
Boron	mg/l	1	Ν	0.54	0.56	1.8	1.8	0.18	0.18	0.61	0.63	0.5	0.5
Bromide	ug/l			1400	1500	4100	4200	3000	3200	1200	1300	6800	6900
Calcium, Total	mg/l			7.2	8	26	26	73	76	19	20	190	200
Carbon Dioxide	mg/l			ND	ND	6	6.2	2.8	2.3	3.3	2.7	4.9	5.2
Carbonate as CO3	mg/l			6.4	6.6	6	6.2	ND	ND	3.3	4.3	ND	ND
Cation Sum	meq/l			13	15	22	24	14	14	9.6	10	69	64
Chloride	mg/l	500	S	350	380	580	610	410	430	180	180	2000	2100
Fluoride	mg/l	2	Р	0.63	0.62	0.52	0.52	0.16	0.17	0.78	0.77	0.21	0.22
Hydroxide as OH, Calculated	mg/l			ND									
Iodide	ug/l			120	110	1200	1200	1100	1200	380	370	46	56
Nitrate (as NO3)	mg/l	45	Р	ND									
Nitrate as Nitrogen	mg/l	10	Р	ND									
Nitrite, as Nitrogen	mg/l	1	Р	ND									
Potassium, Total	mg/l			8.2	8.7	13	13	9.2	9.5	5	5.7	23	15
Sodium, Total	mg/l			270	310	440	470	170	170	180	190	1200	1000
Sulfate	mg/l	500	S	ND	330	350							
Total Dissolved Solid (TDS)	mg/l	1000	S	860	890	1500	1500	880	910	610	600	4100	3900
Total Nitrogen, Nitrate+Nitrite	mg/l	10	Р	ND									
General Physical Properties		L											
Apparent Color	ACU	15	S	70	70	120	150	10	ND	100	100	15	20
Hardness (Total, as CaCO3)	mg/l			41	46	140	150	290	300	82	85	860	890
Lab pH	Units			8.5	8.5	8.2	8.2	8	8.1	8.2	8.3	7.8	7.8
Langelier Index - 25 degree	None			0.38	0.48	0.98	0.96	0.7	0.82	0.6	0.7	0.95	0.98
Odor	TON	3	S	2	2	2	2	1	1	2	2	8	2
Specific Conductance	umho/en	1600	S	1500	1700	2500	2500	1600	1600	1000	1000	6800	6800
Turbidity	NTU	5	S	2.7	0.54	0.76	0.5	0.87	0.2	5.6	7	0.17	0.1
Metals													
Aluminum, Total	ug/l	1000	Р	ND									
Antimony, Total	ug/l	6	Р	ND									
Arsenic, Total	ug/l	10	Р	ND	ND	2.2	1.7	ND	1.2	ND	ND	1.6	2.7
Barium, Total	ug/l	1000	Р	6.5	7.4	44	45	25	25	15	15	72	70
Beryllium, Total	ug/l	4	Р	ND									
Cadmium, Total	ug/l	5	Р	ND									
Chromium, Total	ug/l	50	Р	ND	ND	ND	1.5	ND	ND	ND	3.5	ND	1.1
Hexavalent Chromium (Cr VI)	ug/l			0.36	0.07	0.41	0.2	0.15	ND	0.5	0.2	0.25	0.042
Copper, Total	ug/l	1300	Р	ND									
Iron, Total	mg/l	0.3	S	0.02	ND	0.06	0.054	0.036	0.036	ND	ND	ND	ND
Lead, Total	ug/l	15	Р	ND									
Magnesium, Total	None	50		5.6	6.3	19	20	27	28	8.4	8.6	94	95
Manganese, Total	ug/l	50	S	4.2	4.3	9.2	8.6	14	14	6.1	6.6	48	46
Mercury	ug/l	2	Р	ND									
Nickel, Total	ug/l	100	Р	ND	ND 12								
Selenium, Total	ug/l	50	Р	ND	ND	11	7.2	ND	5.1 ND	ND	ND	ND	12
Silver, Total	ug/l	100	S	ND									
Thallium, Total	ug/l	2	Р	ND									
Zinc, Total	ug/l	5000	S	ND									
Volatile Organic Compounds	4	ç	_	ND			ND						
1,1-Dichloroethane	ug/l	5	Р	ND									
1,1-Dichloroethylene	ug/l	6	Р	ND									
1,2-Dichloroethane	ug/l	0.5	P	ND									
Benzene Carbon Tetrachlorida	ug/l	1	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	ug/l	0.5	P		ND ND		ND ND		ND ND				ND ND
Chlorobenzene Chloromethane (Methyl Chloride)	ug/l	70	Р	ND		ND	ND ND	ND ND		ND ND	ND ND	ND ND	
Chloromethane (Methyl Chloride)	ug/l	6	P	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
cis-1,2-Dichloroethylene	ug/l	6	Р		ND ND	ND ND			ND ND				ND ND
Di-Isopropyl Ether	ug/l	200	P	ND ND									
Ethylbenzene Ethyl Tart Dutyl Ethan	ug/l	300	Р	ND ND									
Ethyl Tert Butyl Ether Freon 11	ug/l	150	P										
	ug/l	150	P	ND									
Freon 113 Mathylana Chlarida	ug/l	1200	P	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
Methylene Chloride	ug/l	5	P	ND ND									
MTBE	ug/l	13	P	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene Tert Amyl Methyl Ether	ug/l	100	Р	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene (PCE)	ug/l	5	Р	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Toluene	ug/l	5	P P	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND
Total Trihalomethanes	ug/l	150 80	P P	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ug/l			ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
trans-1,2-Dichloroethylene	ug/l	10	P								ND ND		
Trichloroethylene (TCE)	ug/l	5	P	ND		ND	ND						
Vinyl chloride (VC)	ug/l	0.5	P	ND									
Xylenes (Total)	ug/l	1750	Р	ND									
Others	110/1	1	31	ND									
1,4-Dioxane	ug/l	1	N	ND	 NID								
Perchlorate	ug/l	6	Р	ND	ND	ND 0.16	ND 0.12	ND	ND	ND	ND	ND 0.2	ND 0.12
Surfactants	mg/l	0.5	S	ND	ND	0.16 20	0.12	ND 1.6	ND 1.6	ND 11	ND 7.3	0.2	0.13
Total Organic Carbon	mg/l			4.5	4							1	

Page 1 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
	1			4/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 1	1,730	1,750	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		,	,	4/21/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	1,195	1,215	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/21/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 3	965	985	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
D 11 // 1				4/21/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Bell #1				4/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 4	615	635	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/21/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 5	420	440	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/21/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 6	250	270	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/21/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				5/22/2019	ND	ND	ND	ND	ND	ND	ND	6.3	2.9	ND	ND	ND	ND	ND
	Zone 1	1775	1795	9/12/2019	ND	ND	ND	ND	ND	ND	ND	4.4	2.4	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	6.0	2.8					
				5/22/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	1390	1410	9/12/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				5/22/2019	4.1	6.7	ND	4.7	8.9	5.8	2.8	56.0	20.0	ND	ND	ND	ND	ND
	Zone 3	1090	1110	9/12/2019	3.1	4.8	ND	3.3	7.4	4.4	2.1	41.0	14.0	4.3	ND	ND	ND	ND
Bell Gardens #1				4/22/2020	3.5		ND	4.0	7.8	4.9	2.7	51.0	16.0					
Bell Galdells #1				5/22/2019	6.4	5.5	2.2	5.5	5.1	9.7	4.3	39.0	18.0	8.0	ND	ND	ND	ND
	Zone 4	855	875	9/12/2019	4.6	ND	ND	3.6	3.2	6.7	2.6	23.0	11.0	6.4	ND	ND	ND	ND
				4/22/2020	5.4		ND	4.6	3.8	8.0	3.2	28.0	14.0					
				5/22/2019	4.3	ND	ND	3.1	4.5	5.2	ND	24.0	11.0	ND	ND	ND	ND	ND
	Zone 5	555	575	9/12/2019	3.8	ND	ND	2.5	3.7	4.3	ND	18.0	8.9	4.4	ND	ND	ND	ND
				4/22/2020	4.4		ND	3.1	4.1	5.0	ND	23.0	10.0					
				5/22/2019	5.7	5.7	ND	4.6	5.4	7.9	2.4	30.0	15.0	6.8	ND	ND	ND	ND
	Zone 6	370	390	9/12/2019	5.0	ND	ND	3.3	3.6	5.7	1.9	22.0	11.0	5.9	ND	ND	ND	ND
				4/22/2020	6.0		ND	3.9	4.4	7.9	2.3	26.0	12.0					
	Zone 1	990	1,010	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Carson #1	Zone 2	740	760	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Curbon #1	Zone 3	460	480	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	250	270	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1,230	1,250	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	850	870	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Carson #2	Zone 3	600	620	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	450	470	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	230	250	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1,600	1,620	3/3/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	1,220	1,240	3/3/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Carson #3	Zone 3	1,008	1,100	3/3/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	870	890	3/3/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	620	640	3/3/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	360	380	3/3/2020	ND		ND	ND	ND	ND	ND	ND	ND					

Page 2 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
				3/19/2019	ND	ND												
	Zone 1	1155	1175	9/25/2019	ND	ND												
				3/11/2020	ND		ND											
				3/19/2019	ND	ND												
	Zone 2	1000	1020	9/25/2019	ND	ND												
				3/11/2020	ND		ND											
				3/19/2019	ND	ND												
	Zone 3	610	630	9/25/2019	ND	ND												
Cerritos #1	-			3/11/2020	ND		ND											
	Zone 4	270	290	3/19/2019	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Zone 4	270	290	9/25/2019 3/11/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 	ND
	-			3/19/2019	ND	ND												
	Zone 5	180	200	9/25/2019	ND	ND												
	Zone 5	100	200	3/11/2020	ND		ND											
				3/19/2019	ND	ND												
	Zone 6	125	135	9/25/2019	ND	ND												
				3/11/2020	ND		ND											
				4/23/2019	ND	ND												
	Zone 1	1350	1370	9/12/2019	ND	ND												
				3/9/2020	ND		ND											
				4/23/2019	2.0	7.3	ND	ND	11.0	ND	3.2	64.0	9.7	ND	ND	ND	ND	ND
	Zone 2	915	935	9/12/2019	ND	6.0	ND	ND	8.9	ND	2.5	48.0	8.0	ND	ND	ND	ND	ND
				3/9/2020	ND		ND	ND	10.0	ND	3.0	59.0	9.1					
				4/23/2019	ND	ND												
	Zone 3	740	760	9/12/2019	ND	ND												
Cerritos #2				3/9/2020	ND		ND											
	7 4	100	510	4/23/2019	ND	ND												
	Zone 4	490	510	9/12/2019	ND	ND												
		-		3/9/2020	ND		ND					 ND						
	7 5	250	270	4/23/2019	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
	Zone 5	350	370	9/12/2019 3/9/2020	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
				4/23/2019	ND	ND												
	Zone 6	150	170	9/12/2019	ND	ND												
	Zone o	150	170	3/9/2020	ND		ND											
				7/9/2020	ND		ND											
~	Zone 1	341	363	8/27/2020	ND		ND											
Chandler #3			100	7/9/2020	2.5		ND	ND	ND	3.1	ND	ND	ND					
	Zone 2	165	192	8/27/2020	2.6		ND	ND	ND	3.2	ND	ND	ND					
	7 1	1220	1200	4/8/2019	ND	3.6	ND	ND	ND									
	Zone 1	1330	1390	7/8/2020	ND		ND											
				4/8/2019	ND	ND												
	Zone 2	940	960	9/26/2019	ND	ND												
				4/29/2020	ND		ND											
				4/8/2019	ND	ND												
	Zone 3	760	780	9/26/2019	ND	ND												
				4/29/2020	ND		ND											
Commerce #1				4/8/2019	ND	ND	ND	ND	2.3	ND	ND	8.4	2.7	ND	ND	ND	ND	ND
	Zone 4	570	590	9/26/2019	ND	ND	ND	ND	2.0	ND	ND	8.2	2.6	ND	ND	ND	ND	ND
	├ ───┤			4/29/2020	ND		ND	ND	3.1	ND	ND	12.0	3.1					
	7 5	225	245	4/8/2019	ND	2.3	ND	ND	ND	ND	ND	ND						
	Zone 5	325	345	9/26/2019	ND	2.3	ND	ND	ND	ND	ND	ND						
				4/29/2020	ND	 NID	ND	ND	ND	ND	ND	2.0	ND		 NID	 NID		
	Zona 6	205	225	4/8/2019 9/26/2019	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	Zone 6	205	223	4/29/2020	ND	ND 	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1		L	4/29/2020	ND		ND											

Page 3 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
				4/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 1	1370	1390	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	1150	1170	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Compton #1				4/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Compton #1				4/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 3	800	820	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
		160	10.0	4/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 4	460	480	9/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7	1.475	1,495	4/20/2020 4/24/2020	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND					
	Zone 1 Zone 2	830	1,495	4/24/2020	ND ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	585	605	4/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Compton #2	Zone 4	380	400	4/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	295	315	4/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	150	170	4/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Lone o	100	170	4/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 1	1170	1190	9/23/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				5/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/4/2019	ND	ND	ND	ND	2.0	ND	ND	8.6	3.4	ND	ND	ND	ND	ND
	Zone 2	940	960	9/23/2019	ND	ND	ND	ND	2.0	ND	ND	9.0	3.5	ND	ND	ND	ND	ND
				5/11/2020	ND		ND	ND	2.6	ND	ND	10.0	4.0					
				4/4/2019	1.1	7.8	ND	1.6	6.2	2.7	2.8	27.0	9.1	ND	ND	ND	ND	ND
	Zone 3	580	600	9/23/2019	ND	7.1	ND	ND	6.2	2.7	2.8	26.0	8.7	2.8	ND	ND	ND	ND
Downey #1				5/11/2020	ND		ND	ND	7.2	3.1	3.4	32.0	10.0					
5	7 4	370	390	4/4/2019	2.4	6.5	ND	ND	8.0	ND	2.0	39.0	5.6	ND	ND	ND	ND	ND
	Zone 4	370	390	9/23/2019 5/11/2020	1.9	5.8	ND ND	ND ND	7.3 7.9	ND ND	2.2	35.0 40.0	5.4 5.9	ND	ND	ND	ND	ND
				4/4/2019	2.6 ND	 ND	ND	ND	7.9 ND	ND	ND	40.0 ND	5.9 ND	 ND	ND	 ND	 ND	ND
	Zone 5	250	270	9/23/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 5	250	270	5/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 6	90	110	9/23/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				5/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	7	970	990	4/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	970	990	9/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	445	465	4/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Gardena #1	Zone 2	443	405	9/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Garuciia #1	Zone 3	345	365	4/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	515	505	9/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	120	140	4/2/2020	ND		ND	ND	ND	15.0	ND	ND	ND					
	7 1	1 275	1 2 2 5	9/9/2020	ND		ND	ND	ND	18.0	ND	ND	ND					
	Zone 1	1,275 770	1,335 790	3/25/2020	ND ND		ND ND	ND	ND ND	ND	ND	ND ND	ND					
Gardena #2	Zone 2 Zone 3	610	630	3/25/2020 3/25/2020	ND		ND	ND ND	ND	ND ND	ND ND	ND	ND ND					
Garucila #2	Zone 4	340	360	3/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	235	255	3/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	1			3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	910	950	8/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
		-	-	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	710	730	8/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	7.000.2	520	540	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Hawthorne #1	Zone 3	520	540	8/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
riawmorne #1	Zone 4	400	420	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	400	420	8/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	240	260	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Lone 5	240	200	8/11/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	110	130	3/19/2020	2.5		ND	ND	ND	ND	ND	ND	ND					
				8/11/2020	2.1		ND	ND	ND	ND	ND	ND	ND					

Page 4 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
	Zone 1	890	910	3/30/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	690	710	3/30/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Huntington Park #1	Zone 3	420	440	3/30/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	275	295	3/30/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1,380	1,400	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	865	885	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Inglewood #1	Zone 3	430	450	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	280	300	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	150	170	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
		1000	10.10	4/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1900	1940	8/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
			1.1.60	4/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	1440	1460	8/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
			1075	4/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	1255	1275	8/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
T 1 1/2	7 4	000	010	4/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Inglewood #3	Zone 4	890	910	8/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	7	540	560	4/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	540	560	8/20/2020	ND		ND	ND	ND	4.8	ND	ND	ND					
	7 (270	200	4/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	370	390	8/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
		245	265	4/23/2020	10.0		ND	ND	ND	ND	ND	ND	ND					
	Zone 7	245	265	8/20/2020	20.0		ND	ND	ND	6.0	ND	ND	ND					
	Zone 1	1,130	1,150	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	865	885	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
La Mirada #1	Zone 3	690	710	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	470	490	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	225	245	3/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 1	989	1009	9/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	640	660	9/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 3	450	470	9/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lakawa - 1 #1				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Lakewood #1				4/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 4	280	300	9/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 5	140	160	9/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 6	70	90	9/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/22/2020	ND		ND	ND	ND	ND	ND	ND	ND					

Page 5 of 12

	Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
Image: border intermant intermal					5/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Image: border intermant intermant intermark Image: border intermark		Zone 1	1960	2000											ND				
Part Part <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
<th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>																			
Image: border intermant intermant interma Image: border		Zone 2	1740	1760															
Image: brance of the state of the																			
Image: Image:		Zone 3	1300	1320															
Lace of the state of		Lone 5	1000	1020															
Image with probability of the state of the sta																			
Interpart <		Zone 4	995	1015															
Lack on 2 mag sole sole sole No		Zone	,,,,	1015															
Image Image <t< td=""><td>Lakewood #2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lakewood #2																		
Image: border in the state in the		Zone 5	690	710															
Image Fig 571/2019 ND		Zone 5	070	/10															
Image: Image:		+																	
Image: border		76		575															
Image: Probability of the state o		Zone o	333	575															
Image: Part Area Image: Part Area <thimage: area<="" part="" th=""> <thimage: <="" area<="" part="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thimage:></thimage:>																			
Image: border		7 7	255	275															
Image: book of the state of the s		Zone /	255	275															
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
Image: border in the state of the																			
Image: Angle image: A		Zone 8	110	120												ND	ND		
Image: border intermation of the state of the																			
Image: book of the state of the st		Zone 1	1360	1400															
		Zone 1	1500	1100															
Lawnals #1 Low 5 51/4/200 ND ND <td></td> <td>Zona 2</td> <td>885</td> <td>005</td> <td>5/14/2020</td> <td>ND</td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Zona 2	885	005	5/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Zone 2	885	905	9/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		72	615	(25	5/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T	Zone 5	615	033	9/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lawiidale #1	7	205	415	5/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zone 4	393	415	9/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7 5	200	210	5/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zone 5	290	310	9/2/2020	ND		ND	ND	ND	ND	ND	ND	ND					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7 (170	100	5/14/2020	7.8		ND	5.8	120.0	15.0	ND	210	30.0					
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Zone 6	170	190		5.9		ND	3.2	53.0		ND	110	14.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Zone 1	1.240	1.260															
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lomita #1																		
	Domina () I																		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$																			
Long Beach #1 Zone 2 1,230 1,250 5/7/2020 ND ND																			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			/																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Long Beach #1																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zone 6	133	1/3															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Zone 1	970	990															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		├ ─── ↓																	
$ Log Beach #2 \\ \hline Log Beach #2 \\ \hline Log Cane 4 \\ \hline$		Zone 2	720	740															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			
Long Beach #2 Zone 4 280 300 3/24/2020 ND ND ND ND ND ND ND Zone 4 280 300 3/24/2020 ND ND ND ND ND ND ND ND		Zone 3	450	470															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Long Beach #2	Zone 5	150	170															
Zone 5 160 180 3/24/2020 ND ND State ND ND ND State ND State ND ND ND State ND State ND ND	Long Deach #2	Zone 4	280	300															
Zone 5 160 180 8/18/2020 3.0 ND ND 5.4 ND ND 3.3 2.3		Zone 4	200	500		ND													
Zone 6 95 115 3/24/2020 ND ND ND 5.4 ND ND 3.3 2.3 <		Zona 5	160	180	3/24/2020	2.0		ND	ND	5.4	ND	ND	3.4	2.6					
		Zone 3	100	180	8/18/2020	3.0		ND	ND	5.4	ND	ND	3.3	2.3					
		7 (0.5	115	3/24/2020	ND		ND	ND	2.3	ND	ND	5.1	ND					
		Zone 6	95	115															

Page 6 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
	Zone 1	1,350	1.390	4/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	997	1.017	4/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Long Beach #3	Zone 3	670	690	4/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
ũ	Zone 4	530	550	4/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	410	430	4/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1,490	1,510	3/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	930	950	3/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
L D 1//	Zone 3	740	760	3/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Long Beach #6	Zone 4	480	500	3/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	380	400	3/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	220	240	3/17/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1,435	1,455	6/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	1,020	1,040	6/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Long Beach #8	Zone 3	780	800	6/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Long Deach #0	Zone 4	635	655	6/24/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	415	435	6/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
ļ	Zone 6	165	185	6/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 1	1,350	1,370	3/18/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 2	1,080	1,100	3/18/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Los Angeles #1	Zone 3	920	940	3/18/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	640	660	3/18/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	350	370	3/18/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	710	730	3/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				9/28/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	505	525	3/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Los Angeles #2				9/28/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Ű.	Zone 4	410	430	3/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				9/28/2020	ND		ND	ND	ND 3.3	ND	ND ND	ND	ND ND					
	Zone 5	245	265	3/25/2020	ND		ND	ND		2.4		ND						
	7 1	1 210	1,230	9/28/2020	ND ND		ND ND	ND ND	3.2 ND	2.8 ND	ND ND	ND ND	ND ND					
	Zone 1	1,210	895	4/15/2020 4/15/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2 Zone 3	875 705	725	4/15/2020	ND ND		ND	ND	ND ND	ND ND	ND ND	ND ND	ND					
Los Angeles #3	Zone 4	550	570	4/15/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	330	350	4/15/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	190	210	4/15/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1,740	1,780	3/26/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	1,740	1,730	3/26/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	720	740	3/26/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Los Angeles #4	Zone 4	490	510	3/26/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 5	355	375	3/26/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 6	235	255	3/26/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 1	1,960	2,000	4/15/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 2	1,235	1,255	4/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
T -= A -= 1 //5	Zone 3	750	770	4/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Los Angeles #5	Zone 4	555	575	4/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zone 5	430	450	4/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
ł	Zone 6	215	235	4/14/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zona 1	580	600	6/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	Zone 1	380	600	4/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1	Zona 2	420	440	6/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Los Angolos #6	Zone 2	420	440	4/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Los Angeles #6	Zone 3	345	365	6/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	Zone 5	345	305	4/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					
ł	Zone 4	255	275	6/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	Lone	200	215	4/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					

Page 7 of 12

Rate State No o No	Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
Image: border intermating intermatinterand intermatintermating intermating intermating int					5/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		Zone 1	2880	2900			ND								ND	ND	ND	ND	ND
Image: Image:																			
Image: bold bold bold bold bold bold bold bold		7 0	2.420	2450															
Image: book of the stress of the s		Zone 2	2430	2450															
Image: brain		-																	
Image: border with the state of th		Zone 3	1650	1670															
		Lone 5	1000	10/0															
Image: border with start															ND	ND	ND	ND	
Lymodel Lem Log S150/10 ND		Zone 4	1445	1465	9/27/2019	ND	ND								ND	ND	ND	ND	ND
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
Image: border																			
Image: biase	Lynwood #1	Zone 5	1200	1220															
Image: Image:																			
Image: border		Zana 6	000	000															
h h		Zone o	880	900															
Ref 64 60 9272019 ND <																			
Image: border		Zone 7	640	660															
And bits No State State <th< td=""><td></td><td>Lone ,</td><td>010</td><td>000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		Lone ,	010	000															
Image: Angle and the state of the																			
Image: bits of the section o		Zone 8	315	335		-													
Image: brance Brance 5/15/2019 ND N								ND		6.7									
Image: border					5/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manhattan Beah I		Zone 9	160	180			ND								ND	ND	ND	ND	ND
Mashatan Bash Inspanse Inspanse No ND																			
$ Manhattan Beach H \\ Namestan $																			
Manhatan Beach #1 Zone 4 85 85 227/202 ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
$ Norvalk \# 1 \ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Manhattan Darah #1																		
	Mannatian Beach #1																		
Zone 7 180 200 2272202 ND ND																			
$ Montebello #1 \\ Norwalk N1 \\ Norwalk N1 \\$																			
$ Noreals \# \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		Lone /	100	200												ND			
$ Norwalk #1 \\ Norwalk #1 \\ \hline Norwalk \#1 \\ \hline Norwa$		Zone 1	900	960															
Montebello #1 Zone 2 690 710 92/62/019 ND ND <th< td=""><td></td><td></td><td></td><td></td><td>3/26/2020</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td></td></th<>					3/26/2020	ND			ND				ND	ND					
Montebello #1 Image: Conc # 326/2020 ND ND																			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Zone 2	690	710															
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$																			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N (1 11 //1	7 2	500	520															
$ Norwalk #1 \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Montebello #1	Zone 3	500	520															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$ Norwalk \#1 \\ \hline Nor$		Zone 4	370	390															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Lone r	570	570															
Zone 5 210 230 9/26/2019 8.4 11.0 ND 4.7 7.5 7.3 2.6 41.0 18.0 7.6 ND ND ND ND 3/26/020 9.8 ND 5.1 8.1 7.7 2.7 44.0 18.0																			
$ Norwalk #1 \\ No$		Zone 5	210	230															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						9.8			5.1		7.7		44.0	18.0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			
$ Norwalk #1 \\ No$		Zone 1	1400	1420															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7 0	000	1010															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Zone 2	990	1010															
Norwalk #1 Zone 3 720 740 9/25/2019 ND																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Norwalle #1	Zona 3	720	740															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	INOI WAIK #1	Zone 5	120	/40												ND			
Zone 4 430 450 9/25/2019 ND				-												ND			
4/21/2020 ND ND ND ND ND ND ND ND ND ND		Zone 4	430	450															
Zone 5 220 240 5/2/2019 ND		20110																	
Zone 5 220 240 9/25/2019 ND ND ND ND ND ND ND ND ND ND ND ND ND																			
		Zone 5	220	240															
					4/21/2020														

Page 8 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
				4/16/2019	ND	ND	ND	ND	2.5	ND	ND	17.0	2.9	ND	ND	ND	ND	ND
	Zone 1	1460	1480	9/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/28/2020	ND		ND	ND	ND	ND	ND	12.0	2.1					
				4/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	1260	1280	9/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0	ND	ND
				4/28/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	7 2	0.00	000	4/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 3	960	980	9/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Norwalk #2				4/28/2020 4/16/2019	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.8	ND ND	ND	ND	 ND	 ND	 ND
	Zone 4	800	820	9/24/2019	ND	ND	ND	ND	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND
	Zone 4	000	020	4/28/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				4/16/2019	1.8	7.9	ND	ND	10.0	ND	3.2	54.0	9.2	ND	ND	ND	ND	ND
	Zone 5	480	500	9/24/2019	1.7	6.5	ND	ND	8.4	ND	2.7	49.0	8.5	ND	ND	ND	ND	ND
				4/28/2020	2.6		ND	ND	9.7	ND	2.4	53.0	9.7					
				4/16/2019	7.3	8.0	ND	5.8	9.6	8.8	2.8	47.0	20.0	7.9	ND	ND	ND	ND
	Zone 6	236	256	9/24/2019	6.3	7.1	ND	5.1	8.5	8.4	2.7	44.0	19.0	8.4	ND	ND	ND	ND
				4/28/2020	5.9		ND	4.9	8.4	7.6	2.6	48.0	17.0					
	Zone 1	860	900	3/28/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone i	800	900	4/28/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				3/28/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	460	480	9/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
D: //1				4/28/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Pico #1	72	200	400	3/28/2019	2.7	ND	ND	ND	5.2	ND	ND	21.0	7.1	ND	ND	ND	ND	ND
	Zone 3	380	400	9/24/2019 4/28/2020	2.8 3.1	6.1	ND ND	ND ND	5.3 5.2	ND ND	ND ND	22.0	8.9 7.2	ND	ND	ND	ND	ND
				3/28/2020	9.3	11.0	ND	3.1			ND	21.0		ND	ND	ND	ND	ND
	Zone 4	170	190	9/24/2019	9.5	12.0	ND	3.2	4.6 5.3	5.5 5.5	ND	7.4 7.9	13.0 13.0	6.3	ND	ND	ND	ND
	Zone 4	170	190	4/28/2020	9.4	12.0	ND	2.4	4.8	4.0	ND	9.6	10.0	0.5		ND	ND 	ND
				5/7/2019	ND	ND	ND	ND	2.1	ND	ND	4.5	ND	ND	ND	ND	ND	ND
	Zone 1	1180	1200	9/23/2019	ND	ND	ND	ND	1.9	ND	ND	4.4	ND	ND	ND	ND	ND	ND
				4/16/2020	ND		ND	ND	2.5	ND	ND	6.1	ND					
				5/7/2019	5.1	8.0	ND	2.8	10.0	4.1	2.0	42.0	16.0	ND	ND	ND	ND	ND
	Zone 2	830	850	9/23/2019	4.8	7.8	ND	2.9	9.7	4.0	1.7	44.0	16.0	4.3	ND	ND	ND	ND
				4/16/2020	4.8		ND	3.3	8.6	4.6	2.4	41.0	15.0					
				5/7/2019	4.5	7.1	ND	2.7	8.9	5.0	ND	40.0	15.0	ND	ND	ND	ND	ND
	Zone 3	560	580	9/23/2019	3.1	5.1	ND	2.3	6.7	3.7	ND	30.0	11.0	3.7	ND	ND	ND	ND
Pico #2				4/16/2020	4.4		ND	3.1	7.9	4.7	2.2	35.0	13.0					
			2.40	5/7/2019	12.0	9.4	ND	3.1	4.7	20.0	3.2	20.0	15.0	22.0	ND	ND	ND	ND
	Zone 4	320	340	9/23/2019	8.5	6.9	ND	2.8	3.6	13.0	2.3	15.0	11.0	16.0	ND	ND	ND	ND
				4/16/2020 5/7/2019	10.0	18.0	ND ND	3.3	4.5	16.0 15.0	2.5	18.0 20.0	13.0	23.0	 NID	ND	ND	 ND
	Zone 5	235	255	9/23/2019	13.0 9.4	18.0	ND ND	2.9 2.6	3.4 2.9	15.0	3.5 2.4	20.0	16.0 11.0	23.0	ND ND	ND ND	ND ND	ND ND
	Lone J	235	233	4/16/2020	7.9		2.5	2.0	4.4	11.0	Z.4 ND	15.0	10.0		ND 	ND 	ND 	ND
				5/7/2019	6.8	6.8	3.0	2.9	4.0	13.0	ND	15.0	9.2	11.0	ND	ND	ND	ND
	Zone 6	100	120	9/23/2019	7.3	6.8	4.8	3.0	3.0	22.0	3.9	21.0	9.4	24.0	ND	ND	ND	ND
				4/16/2020	7.0		4.0	4.8	2.6	20.0	ND	11.0	12.0					
DM 1 C 1 1	Zone 1	555	595	3/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
PM-1 Columbia	Zone 2	460	500	3/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	645	665	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
PM-2 Police Station	Zone 2	520	540	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
1 WI-2 I Office Station	Zone 3	370	390	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	240	260	3/4/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	640	680	3/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				8/6/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	480	520	3/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
PM-3 Madrid	├ ──── ├			8/6/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	240	280	3/23/2020	ND		ND	ND	ND	ND	ND	ND	ND					
		-		8/6/2020	ND		ND	ND	ND	ND 2.5	ND	ND	ND					
	Zone 4	145	185	3/23/2020	4.5		ND	ND	3.6	3.5	ND	ND	ND					
L	I		I	8/6/2020	ND		ND	ND	ND	2.2	ND	ND	ND					

Page 9 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
	Zone 1	670	710	3/29/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone I	670	/10	8/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	7 0	500	5.10	3/29/2020	ND		ND	ND	ND	ND	ND	ND	ND					
DIC () C	Zone 2	500	540	8/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					
PM-4 Mariner				3/29/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	340	380	8/16/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				3/29/2020	3.6		ND	ND	14.0	ND	ND	8.0	4.6					
	Zone 4	200	240	8/16/2020	2.9		ND	ND	11.0	ND	ND	5.8	2.6					
-	Zone 1	1,360	1,380	3/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	940	960	3/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	770	790	3/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
PM-5 Columbia Park	Zone 4	580	600	3/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5		340	3/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	-	320																
	Zone 6	140	160	3/9/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	1195	1235	3/27/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				8/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	905	925	3/27/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				8/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	770	790	3/27/2020	ND		ND	ND	ND	ND	ND	ND	ND					
PM-6 Madrona Marsh	Zone 5	110	170	8/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
i wi-o wiadrona wiarsh	Zone 4	530	550	3/27/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	550	550	8/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	7 5	200	410	3/27/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	390	410	8/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				3/27/2020	5.0		2.6	12.0	43.0	15.0	3.8	120	33.0					
Zone 6	Zone 6	240	260	8/13/2020	4.6		ND	11.0	38.0	15.0	3.2	100	25.0					
				5/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 1	1110	1130	9/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				3/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				5/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND
	Zone 2	910	930	9/24/2019	ND	ND	ND	ND	1.9	ND	ND	ND	2.6	ND	ND	ND	ND	ND
	Zone 2	210	250	3/25/2020	ND		ND	ND	ND	ND	ND	ND	2.3					
				5/2/2019	4.3	8.0	ND	1.9	9.9	3.0	2.6	52.0		ND	ND	ND	ND	ND
	Zone 3	710	730	9/24/2019		7.7	ND	2.1	9.9	3.0	2.0		14.0	2.4	ND	ND	ND	ND
	Zone 5	/10	730		4.1							48.0	15.0					
Rio Hondo #1				3/25/2020	4.2		ND	2.1	10.0	2.7	2.5	50.0	14.0					
	7 4	120	150	5/2/2019	7.5	6.0	1.8	4.2	3.6	12.0	4.0	23.0	15.0	11.0	ND	ND	ND	ND
	Zone 4	430	450	9/24/2019	6.6	4.9	ND	4.2	3.1	9.9	3.8	22.0	13.0	10.0	ND	ND	ND	ND
				3/25/2020	6.0		ND	3.9	2.9	9.1	3.4	21.0	12.0					
				5/2/2019	8.1	6.6	ND	6.0	4.1	15.0	3.4	22.0	18.0	13.0	ND	ND	ND	ND
	Zone 5	280	300	9/24/2019	8.6	6.3	ND	5.9	4.0	15.0	3.2	20.0	17.0	16.0	ND	ND	ND	ND
				3/25/2020	8.2		ND	5.7	3.6	16.0	3.4	20.0	16.0					
				5/2/2019	7.7	8.6	1.9	7.7	3.1	28.0	3.8	16.0	22.0	25.0	ND	ND	ND	ND
	Zone 6	140	160	9/24/2019	6.8	6.8	1.8	6.5	3.0	18.0	3.7	17.0	17.0	19.0	ND	ND	ND	ND
				3/25/2020	6.3		ND	4.7	2.8	11.0	3.0	16.0	13.0					
	Zone 1	1,345	1,365	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	1,160	1,180	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 3	1,020	1,040	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Seal Beach #1	Zone 4	775	795	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	605	625	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 6	215	225	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 7	60	70	4/13/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	LUIC /	00	70	4/13/2020	ND		пD	ND	ND	пD	IND	ND	ND					

Page 10 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
				3/28/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 1	1440	1460	9/19/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				3/28/2019	1.5	ND	ND	2.5	8.2	3.3	ND	42.0	11.0	ND	ND	ND	ND	ND
	Zone 2	1320	1340	9/19/2019	ND	ND	ND	2.4	7.6	3.3	ND	40.0	11.0	2.9	ND	ND	ND	ND
				4/20/2020	ND		ND	2.7	8.8	3.7	ND	46.0	12.0					
				3/28/2019	ND	ND	ND	1.6	4.6	2.6	ND	20.0	7.2	ND	ND	ND	ND	ND
South Gate #1	Zone 3	910	930	9/19/2019	ND	ND	ND	ND	4.6	2.2	ND	ND	5.8	2.1	ND	ND	ND	ND
				4/20/2020	ND		ND	ND	5.5	2.6	ND	23.0	7.2					
				3/28/2019	3.0	ND	ND	3.2	5.5	5.1	1.8	26.0	11.0	ND	ND	ND	ND	ND
	Zone 4	565	585	9/19/2019	2.5	ND	ND	2.8	5.4	4.6	ND	22.0	10.0	4.4	ND	ND	ND	ND
				4/20/2020	3.2		ND	3.3	6.9	5.5	ND	28.0	12.0					
				3/28/2019	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 5	220	240	9/19/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/20/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 1	740	760	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Lone I	, 10	, 30	7/31/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	560	580	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Lone 2	200	500	7/31/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Westchester #1	Zone 3	455	475	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Westerlester #1	Zone 5	155	175	7/31/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	310	330	3/19/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Lone	510	550	7/31/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	215	235	3/19/2020	ND		ND	ND	ND	ND	ND	ND	2.1					
	Lone	210	200	7/31/2020	ND		ND	ND	ND	ND	ND	ND	3.1					
				3/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND
	Zone 1	749	769	10/30/2019	ND	ND	ND	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND
				4/30/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				3/13/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Zone 2	610	629	10/30/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				4/30/2020	ND		ND	ND	ND	ND	ND	ND	ND					
				3/13/2019	1.9	7.2	ND	1.8	6.1	2.1	1.7	24.0	13.0	ND	ND	ND	ND	ND
	Zone 3	463	482.5	10/30/2019	2.1	7.6	2.2	2.1	6.9	2.2	2.5	38.0	15.0	2.5	ND	ND	ND	ND
				4/30/2020	2.1		ND	2.2	6.9	2.2	2.4	32.0	13.0					
				3/13/2019	4.2	12.0	3.1	1.8	4.7	3.8	3.5	28.0	19.0	ND	ND	ND	ND	ND
	Zone 4	393	402	10/30/2019	2.7	9.0	2.1	1.9	6.0	2.7	2.5	31.0	15.0	2.7	ND	ND	ND	ND
				4/30/2020	12.0		3.7	2.0	5.2	5.6	3.9	31.0	18.0					
X71 XX		224	242.5	3/14/2019	4.6	13.0	2.6	1.9	3.5	4.2	2.6	13.0	13.0	ND	ND	ND	ND	ND
Whittier Narrows #1	Zone 5	334	343.5	10/30/2019	4.3	12.0	2.7	1.9	4.1	4.1	3.3	19.0	15.0	3.9	ND	ND	ND	ND
				4/30/2020	7.4		2.9	2.0	4.4	4.7	3.2	20.0	14.0					
	7 (272	292.5	3/14/2019	5.0	12.0	2.5	1.3	2.1	5.5	ND	8.8	9.1	6.3	ND	ND	ND	ND
	Zone 6	273	282.5	10/30/2019	4.3	13.0	ND	ND	1.9	4.9	ND	5.8	8.6	6.1	ND	ND	ND	ND
				4/30/2020	16.0		2.7	ND 2.0	2.5	6.0	2.0	12.0	9.2		 NID	 NID		
	77	22.4	242	3/14/2019	4.6	14.0	2.7	2.0	2.1	6.0	2.9	21.0	12.0	6.5	ND	ND	ND	ND
	Zone 7	234	243	10/30/2019	4.6	13.0	ND	ND	2.2	3.2	ND	8.9	8.3	4.0	ND	ND	ND	ND
				5/1/2020	5.6		3.0	ND	2.7	2.5	2.3	17.0	9.4					
	7 0	162	172	3/14/2019	4.8	11.0	2.3	1.9	ND	6.0	ND	10.0	8.6	8.1	ND	ND	ND	ND
	Zone 8	163	173	10/30/2019	5.1	12.0	1.8	2.0	2.1	5.9	ND	6.9	8.3	7.6	ND	ND	ND	ND
				5/1/2020	9.0		3.0	2.1	3.5	4.1	2.6	19.0	11.0					
	7 0	0.5	1015	3/14/2019	6.8	9.8	ND	4.0	3.0	13.0	2.2	9.7	12.0	13.0	ND	ND	ND	ND
	Zone 9	95	104.5	10/31/2019	7.7	12.0	2.5	4.1	4.8	9.7	2.5	26.0	13.0	12.0	ND	ND	ND	ND
				5/1/2020	7.2		2.6	3.1	5.0	6.9	2.8	28.0	12.0					

Page 11 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
				3/28/2019	ND	ND												
	Zone 1	659	678.4	10/31/2019	ND	ND												
				4/14/2020	ND		2.8	ND	ND	ND	ND	ND	5.3					
				3/28/2019	ND	ND												
	Zone 2	579	598.2	10/31/2019	ND	ND												
				4/14/2020	ND		ND											
				3/28/2019	ND	ND												
	Zone 3	469	488.2	10/31/2019	ND	ND												
				4/14/2020	ND		ND											
				3/28/2019	ND	ND												
	Zone 4	419	428.2	10/31/2019	ND	ND												
				4/14/2020	ND		ND											
				3/29/2019	ND	1.8	1.7	ND	ND	ND	ND	ND						
Whittier Narrows #2	Zone 5	329	338.3	10/31/2019	ND	ND	ND	ND	ND	3.0	ND	3.7	5.1	ND	ND	ND	ND	2.6
				4/14/2020	ND		ND											
				3/29/2019	ND	ND												
	Zone 6	263	273.3	10/31/2019	ND	ND												
				4/15/2020	ND		ND											
				3/29/2019	ND	ND												
	Zone 7	214	223.3	10/31/2019	ND	ND												
				4/15/2020	ND		ND											
				3/29/2019	1.0	ND	ND											
	Zone 8	136	145.3	10/31/2019	ND	ND												
				4/15/2020	ND		ND											
				3/29/2019	6.8	ND	ND	2.1	1.9	15.0	ND	2.4	6.3	15.0	ND	ND	ND	ND
	Zone 9	91	100.3	10/31/2019	5.6	ND	ND	ND	2.6	4.9	ND	ND	3.4	6.5	ND	ND	ND	ND
				4/15/2020	4.9		ND	ND	2.6	2.8	ND	ND	2.5					
	Zone 1	1,180	1,200	3/30/2020	ND		ND											
	Zone 2	920	940	3/30/2020	ND		ND											
Whittier #1	Zone 3	600	620	3/30/2020	ND		ND											
	Zone 4	450	470	3/30/2020	ND		ND											
	Zone 5	200	220	3/30/2020	ND		ND											
	7 1	1270	1200	4/23/2019	ND	ND												
	Zone 1	1370	1390	9/25/2019	ND	ND												
				4/30/2020	ND		ND											
	7 2	1000	1110	4/23/2019	ND	ND												
	Zone 2	1090	1110	9/25/2019 4/30/2020	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
							ND ND	ND	ND ND	ND ND			ND					ND
	Zone 3	655	675	4/23/2019 9/25/2019	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND
	Zone 5	055	075	4/30/2020	ND	ND 		ND 	ND	ND 								
Whittier #2				4/23/2020	ND	ND												
	Zone 4	425	445	9/25/2019	ND	ND												
	Zone 4	425	443	4/30/2020	ND		ND											
	<u>├</u>			4/23/2020	1.3	5.3	ND	ND	7.1	ND	ND	39.0	7.9	ND	ND	ND	ND	ND
	Zone 5	315	335	9/25/2019	ND	5.4	ND	ND	6.6	ND	ND	39.0	7.9	ND	ND	ND	ND	ND
	Zone 5	515	555	4/30/2020	ND		ND	ND	8.4	ND	ND	44.0	8.5			ND 		ND
				4/23/2020	4.0	6.0	ND	2.2	5.7	3.7	ND	13.0	8.4	ND	ND	ND	ND	ND
	Zone 6	150	170	9/25/2019	4.0	6.1	ND	2.2	5.0	3.6	ND	13.0	8.7	4.8	ND	ND	ND	ND
	Lone o	150	1/0	4/30/2020	4.7		ND	2.2	5.8	4.4	ND	14.0	10.0					
	Zone 1	885	905	4/1/2020	ND		ND											
	Zone 2	500	520	4/1/2020	ND		ND											
Willowbrook #1	Zone 3	360	380	4/1/2020	ND		ND											
	Zone 4	200	220	4/1/2020	ND		ND											
1	Lone +	200	220	1/1/2020	TYD.		nD											

Page 12 of 12

Well Name	Well Zone	TOP ³	BOP ⁴	Date	PFBS	PFBA	PFDA	PFHpA	PFHxS	PFHxA	PFNA	PFOS	PFOA	PFPeA	6:2 FTS	NEtPFOSA	NEtPFOSAE	NMePFOSAE
	Zone 1	915	935	5/7/2020	7.6		ND	ND	ND	ND	ND	ND	ND					
	Zone i	915	935	8/5/2020	7.4		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	780	800	5/7/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	780	800	8/5/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Wilmington #1	Zone 3	550	570	5/7/2020	4.4		ND	ND	ND	ND	ND	ND	ND					
winnington #1	Zone 5	550	570	8/5/2020	4.5		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	225	245	5/7/2020	2.4		ND	ND	5.5	2.4	ND	2.9	2.1					
	Zone 4	225	243	8/5/2020	2.5		ND	ND	10.0	3.1	ND	5.3	2.2					
	Zone 5	120	140	5/7/2020	5.9		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	120	140	8/5/2020	8.3		ND	ND	ND	ND	ND	2.0	ND					
	Zone 1	950	970	2/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 2	755	775	2/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
Wilmington #2	Zone 3	540	560	2/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 4	390	410	2/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					
	Zone 5	120	140	2/25/2020	ND		ND	ND	ND	ND	ND	ND	ND					

Notes: --- Bold Font indicates exceedance of Notification Level (NL)---NL for Perfluoro-octanesulfonate (PFOS) = 6.5 ng/L---NL for Perfluorooctanoic acid (PFOA) = 5.1 ng/L

-- Only those contituents with detectable concentrations are reported; results for all other constituents included with each method performed in 2019 and/or 2020 were non-detect (ND).
-- 2019 PFAS Analysis was performed by EPA Method 537, Version 1.1 Modified for 32 constituents. The specific constituents analyed with this method were Perfluorobutanesulfonate (PFBS), Perfluorobutanoic acid (PFBA), Perfluorobecanesulfonate (PFDS), Perfluorobecanoid acid (PFDA), Perfluorobecanesulfonate (PFDS), Perfluorobecanesulfonate (PFDA), Perfluorobecanesulfonate (PFDA), Perfluorobecanoic acid (PFHAA), Perfluorobecanesulfonate (PFHAA), Perfluorobecanesulfonate (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFDA), Perfluorobecanoic acid (PFDA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFHAA), Perfluorobecanoic acid (PFTAA), -- 2020 PFAS Analysis was performed by EPA Method 537.1 for 18 constituents. The specific constituents analyzed with this method were Perfluorobutanesulfonate (PFBS), Perfluorodecanoid acid (PFDA), Perfluorodoccanoic acid (PFDoA), Perfluoroheptanoic acid (PFHpA), Perfluoronexanesulfonate (PFISS), Perfluorohexanoic acid (PFUA), Perfluorononanoic acid (PFDoA), Perfluoro-octanesulfonate (PFOS), Perfluorooctanoic acid (PFOA), Perfluorotetradecanoic acid (PFTA), Perfluorotidecanoic acid (PFTrDA), Perfluoronanoic acid (PFUA), Perfluorophylene oxide dimer acid (HFPO-DA), 4.8-dioxa-3H-perfluoronanoic acid (ADONA), 9-chlorohexadecafluoro-3-oxanone-sulfonic acid (9CI-PF3ONS), 11-chlorocicosafluoro-3-oxanudecane-sulfonic acid (I1CI-PF3OUDS), N-ethyl Perfluoroctanesulfonamidoacetic Acid (NEtFOSAA), and N-methyl perfluoroctanesulfonamidoacetic Acid (MMEFOSAA). PAGE LEFT INTENTIONALLY BLANK

TABLE 3.4QUALITY OF REPLENISHMENT WATERPage 1 of 2

			IMPORT	TED WA	TER			REC	YCLED	WATER			LOCAL WATER
		Regulatory	Treated Blend of Colorado River & State Water Project ^A	Untreated Colorado River ^B	Untreated State Water Project ^C	WBMWD ELWRF ^D	LADWP TIWRP ^E	WRD LVL AWTF ^F	SDLAC Pomona WRP ^G	SDLAC San Jose Creek East WRP ^G	SDLAC San Jose Creek West WRP ^G	SDLAC Whittier Narrows WRP ^G	Stormwater ^H
Constituent	Units	Limit	2019	2019	2019	2019	2019	2020	2019-2020	2019-2020	2019-2020	2019-2020	2018-2019
Arsenic	$\mu g/L$	MCL = 10	ND/ ND	2.2	ND	ND	0.08	0.06	0.295	0.65	0.688	ND	NA
Chloride	mg/L	SMCL = 500	83.7 ¹ /55.3 ¹	91 ¹	54 ¹	9.0	125 ^J	46	129	144	114	113	NA
Hexavalent Chromium	µg/L	MCL = 10	ND / ND	ND	ND	0.31	ND	0.22	0.08	0.1	0.08	0.06	NA
Iron	µg/L	SMCL = 300	ND / ND	ND	237	ND	14.3	ND	33.5	36	45	35.3	NA
Manganese	µg/L	SMCL = 50	ND / ND	ND	ND	ND	1.35	0.68	6.35	10.5	6.67	3.84	NA
Nitrate (as N)	mg/L	MCL = 10	0.5 / 0.5	ND	0.4	0.28	1.05	1.62	6.37	6.55	6.22	6.68	NA
Perchlorate	µg/L	MCL = 6	ND / ND	ND	ND	ND	ND	ND	0.37	0.39	0.5	0.3	NA
Tetrachloroethylene (PCE)	µg/L	MCL = 5	ND / ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Trichloroethylene (TCE)	µg/L	MCL = 5	ND / ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Total Dissolved Solids (TDS)	mg/L	SMCL = 1,000	490 ^I / 261 ^I	576 ¹	221 ^I	84	367 ^J	130	545	630	555	591	NA
Alkalinity	mg/L	None	104 ¹ /81 ¹	119 ¹	75 ¹	66	NA	NA	160	166	166	160	NA
Boron	µg/L	NL = 1,000	120/160	120	120	290	664 ^J	270	270	310	310	270	NA
Chromium, Total	µg/L	MCL = 50	ND / ND	ND	ND	ND	ND	0.38	1.0	0.79	0.85	0.87	NA
Copper, Total	µg/L	SMCL = 1,000	ND / ND	ND	ND	10	2.55	ND	5.7	4.31	5.49	3.22	15.8
1,4-Dioxane	µg/L	NL = 1	NA	NA	NA	ND	ND	ND	1.3	1.4	2.2	0.89	NA
Hardness	mg/L	None	217 ^I /112 ^I	264 ^I	87 ^I	48	117	41	206	221	205	213	107
Lead, Total	µg/L	AL = 15	ND / ND	ND	ND	ND	0.20	NA	0.37	0.026	0.043	ND	5.6
Methyl tertiary butyl ether (MTBE)	µg/L	SMCL = 5	ND / ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Nitrite (as N)	mg/L	MCL = 1	ND / ND	ND	ND	0.08	ND	0.077	0.11	0.0079	0.16	0.13	NA
n-Nitrosodimethylamine (NDMA)	ng/L	NL = 10	ND / ND	NA	NA	1.4	4.1	0.4	150	100	41	9.1	NA
pH	pH Units	None	8.5 / 8.5	8.2	8.0	7.4	8.1	8.3	7.5	7.4	7.4	7.4	NA
Selenium	μg/L	MCL = 50	ND / ND	ND	ND	ND	0.20	0.11	ND	ND	ND	ND	NA
Specific Conductance	µS/cm	SMCL = 1,600	820 ¹ /461 ¹	942 ^I	396 ^I	61	581	250	1,040	989	965	968	NA
Sulfate	mg/L	SMCL = 500	171 ¹ /55 ¹	234 ^I	34 ¹	0.32	8.5 ^J	0.56	65.8	107	83.5	111	NA
Total Organic Carbon (TOC)	mg/L	None K	2.6 / 2.5	3.0 ¹	3.3 ^I	0.31	0.20	0.28	6.65	6.52	6.09	5.35	NA
Turbidity	NTU	SMCL = 5	0.04 ^I / 0.04 ^I	0.96 1	0.96 ^I	0.066	0.05	0.15	0.47	0.66	0.54	0.11	NA

See footnotes on following page.

TABLE 3.4 OUALITY OF REPLENISHMENT WATER

Page 2 of 2

Notes:

A = Used at the seawater intrusion barriers: generally, Diemer Plant effluent / Jensen Plant effluent (Data Source #1).

B = Used at the Montebello Forebay spreading grounds (Lake Mathews) (Data Source #1).

C = Used at the Montebello Forebay spreading grounds (Silverwood Lake) (Data Source #1).

D = Effluent of Edward C. Little Water Recycling Facility (ELWRF) before blending with treated water from Colorado River/State Water Project; used at the West Coast Basin Seawater Intrusion Barrier (Data Source #4).

E = Effluent of Terminal Island Water Reclamation Plant/Advanced Water Treatment Facilities (TIWRP) before blending with treated water from Colorado River/State Water Project; used at the Dominguez Gap Seawater Intrusion Barrier. Estimated values used where reported as "detected, but not quantified" [DNQ] (Data Source #6).

F = Effluent of Leo J. Vander Lans Advanced Water Treatment Facility (LVL AWTF) before blending with treated water from Colorado River/State Water Project; used at the Alamitos Gap Seawater Intrusion Barrier (Data Source #7).

G = Effluent of water reclamation plants (WRPs); used at the Montebello Forebay spreading grounds (Data Source #3).

H = Average concentration of water samples collected from LACDPW San Gabriel River Monitoring Station S14 from July 2018 through June 2019 (four storm events total) (Data Source #5).

I = Average concentration for Water Year October 2019 through September 2020 (Data Source #2).

J = Average concentration in blended water (treatment plant effluent & treated water from Colorado River/State Water Project), which is delivered to the Dominguez Gap Seawater Intrusion Barrier (Data Source #6).

K = California's 2014 Groundwater Replenishment Using Recycled Water Regulations specify the following TOC limits for groundwater replenishment projects:

- For surface spreading (surface application), TOC limit = 0.5 mg/L divided by the 120-month running monthly average recycled water contribution (e.g., the TOC limit for a 100% recycled water project would be 0.5 mg/L.) For compliance determination, TOC may be monitored in one of the following: 1) undiluted recycled municipal wastewater prior to application or within the zone of percolation; 2) diluted percolated recycled municipal wastewater, with the value amended to negate the effect of the diluent water; or 3) undiluted recycled municipal wastewater prior to application, with the value amended using a soil-aquifer treatment factor approved by the Division of Drinking Water. - For injection (subsurface application), TOC limit = 0.5 mg/L. For compliance determination, TOC is monitored in the applied recycled municipal wastewater.

NA = Not Available/Analyzed	NTU = Nephelometric Turbidity Units	LACDPW = Los Angeles County Department of Public Works
ND = Not Detected	MCL = Maximum Contaminant Level	LADWP = Los Angeles Department of Water and Power
NS = Not sampled due to plant shutdown	SMCL = Secondary Maximum Contaminant Level	MWD = Metropolitan Water District of Southern California
mg/L = milligrams per liter	AL = Action Level	SDLAC = County Sanitation Districts of Los Angeles County
$\mu g/L = micrograms per liter$	NL = Notification Level	WBMWD = West Basin Municipal Water District
μ S/cm = microSiemen per centimeter	WRP = Water Reclamation Plant	WRD = Water Replenishment District of Southern California

Sources of Data:

(1) 2019 Water Quality Report to MWD Member Agencies (Metropolitan Water District of Southern California, March 2020)

(2) Table D, Monthly Analyses of the District Water Supplies (Metropolitan Water District of Southern California, October 2019 - September 2020)

(3) October 2019 - September 2020 Annual Monitoring Report, Montebello Forebay Groundwater Recharge (County Sanitation Districts of Los Angeles County [SDLAC], December 15, 2020)

(4) Annual West Coast Basin Barrier Project Monitoring Report for 2019, Edward C. Little Water Recycling Facility (West Basin Municipal Water District [WBMWD], March 26, 2020)

(5) Annual stormwater monitoring data provided by Los Angeles County (Los Angeles County Department of Public Works [LACDPW])

(6) Annual Monitoring Report - January-December 2019, Harbor Water Recycling/Dominguez Gap Barrier Project (City of Los Angeles, Bureau of Sanitation)

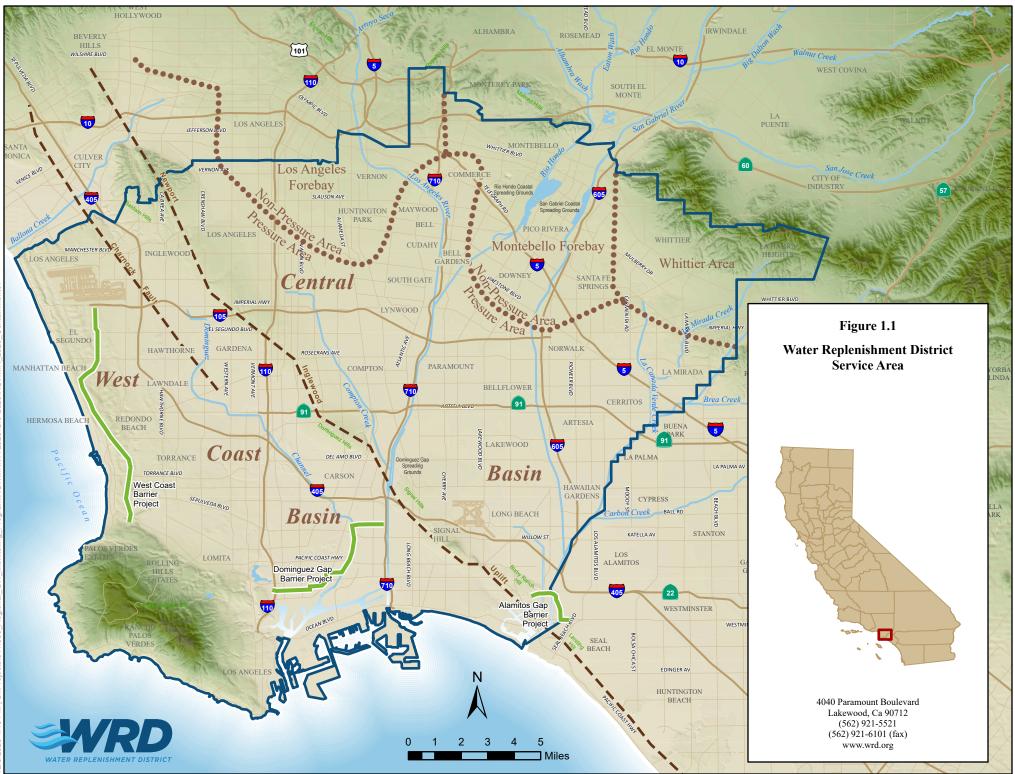
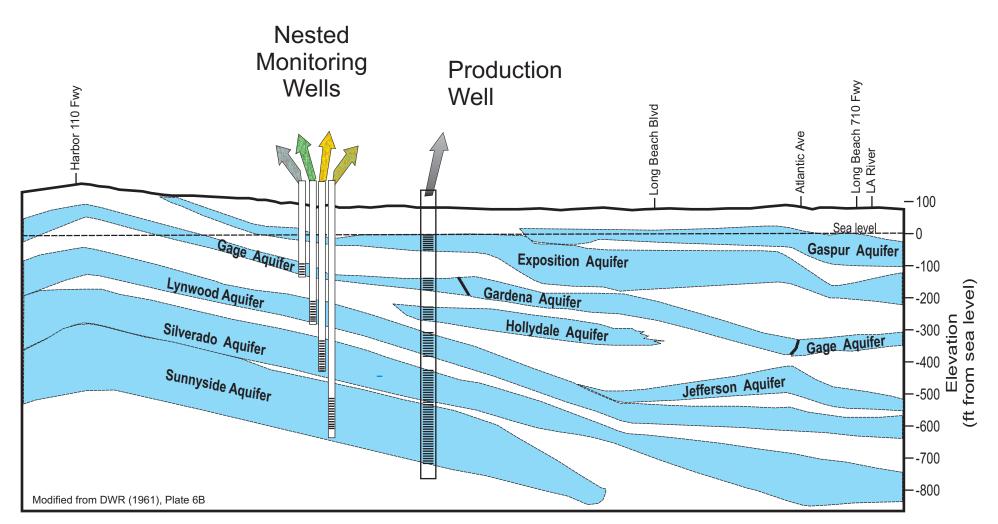
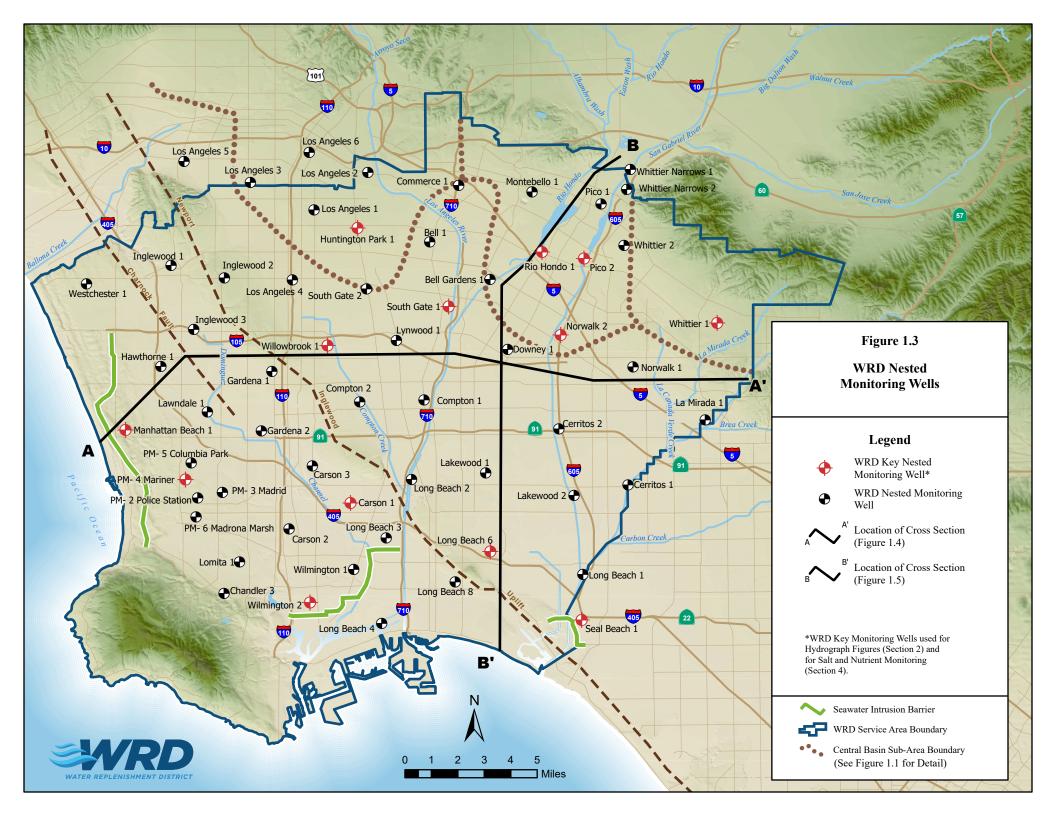
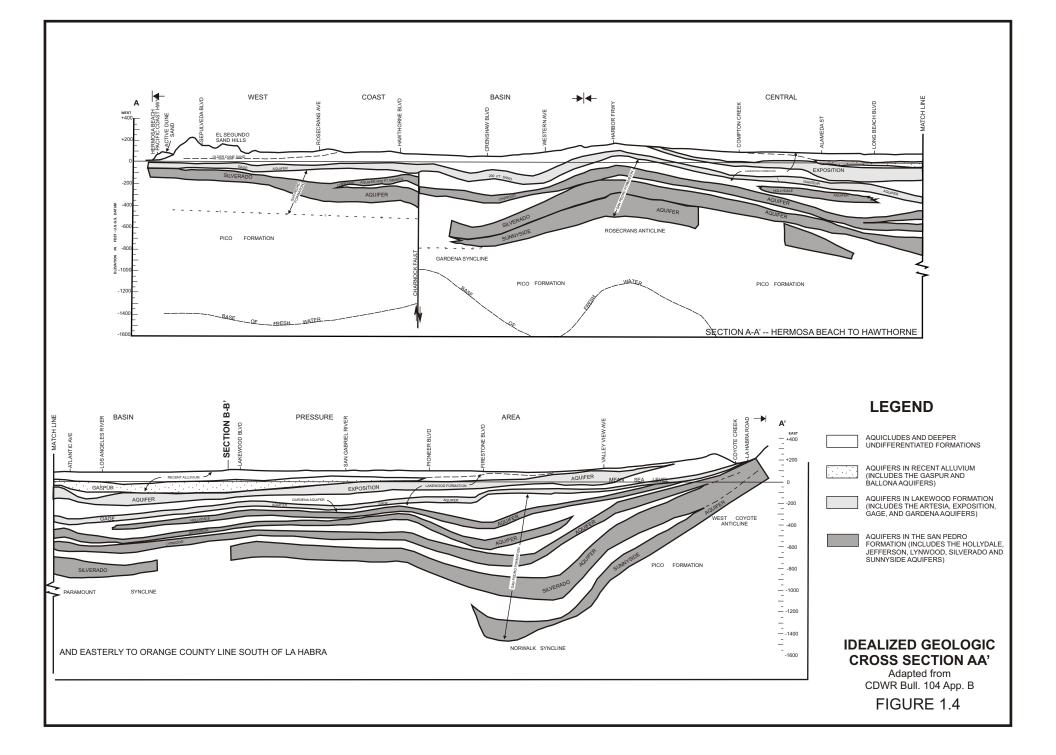

(7) 2020 Annual Summary Report, Alamitos Barrier Recycled Water Project, Leo J. Vander Lans Water Treatment Facility (Water Replenishment District of Southern California [WRD], April 2021).

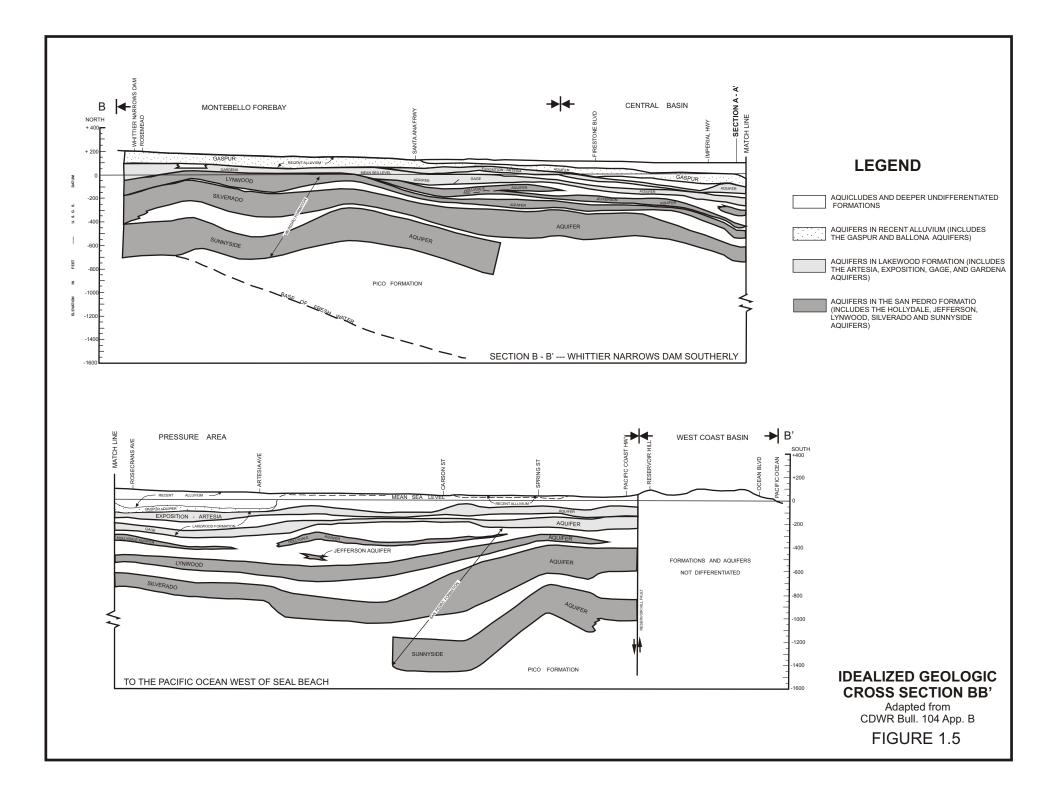
TABLE 3.5MAJOR MINERAL WATER QUALITY GROUPS

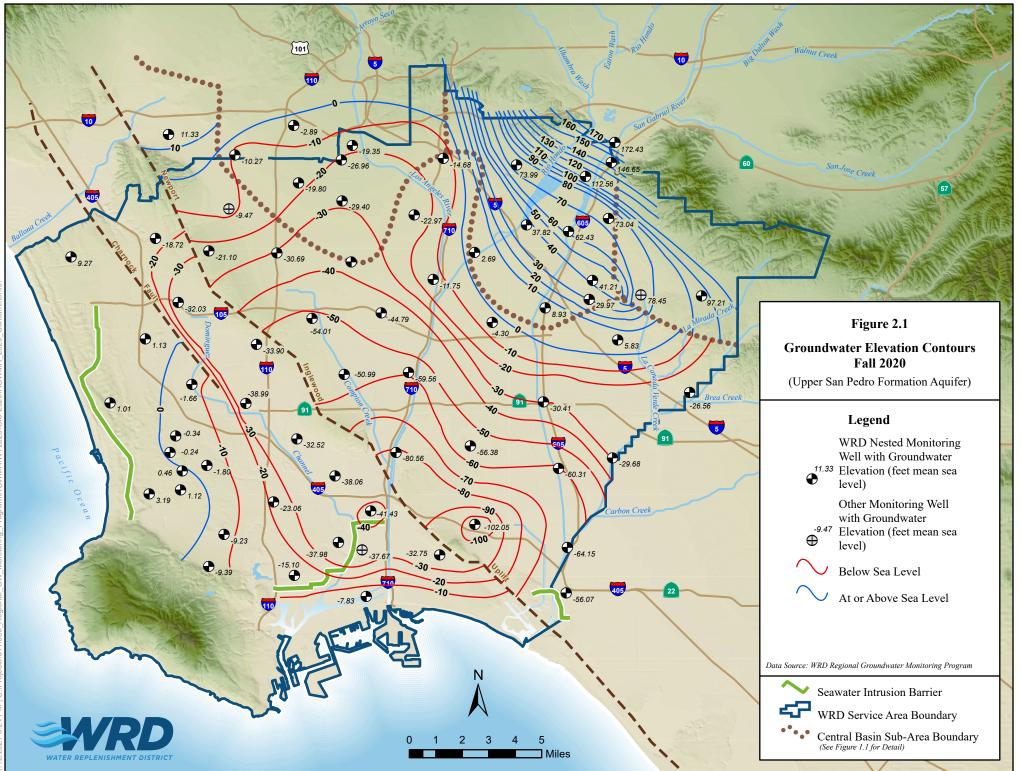

NESTED	GROUP A ZONES	GROUP B ZONES	GROUP C ZONES	GROUP D ZONES
MONITORING			ZONES	LONES
WELL LOCATIONS	Generally Calcium Bicarbonate or Calcium Bicarbonate/Sulfate Dominant	Generally Calcium-Sodium- Bicarbonate or Sodium- Bicarbonate Dominant	Generally Sodium-Chloride Dominant	Generally Different Than Groups A, B, and C
		CENTRAL BASIN		
Bell #1	2, 3, 4, 5, 6	1		
Bell Gardens #1	1, 2, 3, 4, 5, 6			
Cerritos #1	4, 5, 6	1, 2, 3		
Cerritos #2	1, 2, 3, 4, 5, 6			
Commerce #1	3, 4, 5, 6		1	2
Compton #1	2, 3, 4, 5	1		(
Compton #2 Downey #1	2, 3, 4, 5 1, 2, 3, 4, 5, 6	1		6
Huntington Park #1	1, 2, 3, 4, 5, 6			
Inglewood #2	1, 2, 3, 7	1, 2, 3		
Lakewood #1	2, 3, 4, 5, 6	1		
Lakewood #2	_, , , , , , , ,	1, 2, 3, 4, 5, 6, 7, 8		
La Mirada #1	4, 5	1, 2, 3		
Long Beach #1	4	1, 2, 3, 5		6
Long Beach #2	4, 5, 6	1, 2, 3		
Long Beach #6	6	1, 2, 3, 4, 5		
Los Angeles #1	1, 2, 3, 4, 5			
Los Angeles #2	2, 3, 4			
Los Angeles #3	2, 3, 4, 5, 6	1		
Los Angeles #4	3, 4, 5, 6	1, 2	1,2	3, 4, 5, 6
Los Angeles #5 Los Angeles #6		2	1, 2	3, 4, 3, 6
Lynwood #1	3, 4, 5, 6, 7, 8, 9	1, 2	1, 5	4
Montebello #1	3, 4, 5	2		1
Norwalk #1	4, 5	1, 2, 3		•
Norwalk #2	3, 4, 5, 6	1, 2		
Rio Hondo #1	1, 2, 3, 4, 5, 6			
Pico #1	2, 3, 4	1		
Pico #2	1, 2, 3, 4, 5, 6			
Seal Beach #1	6	1, 2, 3, 4, 5		7
South Gate #1	1, 2, 3, 4, 5			
Willowbrook #1 Whittier #1	2, 3, 4	1	1,2	
Whittier #2	3, 4, 5 1, 3, 4, 5, 6	2	1, 2	
Whittier Narrows #1	3, 4, 5, 6, 7, 8, 9	2	1	
	-, ., -, -, -, -, -, -	WEST COAST BASIN		
Carson #1	3,4	1,2		
Carson #2	1, 2, 3, 4, 5	1, 2		
Carson #2	5, 6	1, 2, 3, 4		
Chandler #3	2	1		
Gardena #1	2, 3	1	4	
Gardena #2	2, 3, 4, 5	1		
Hawthorne #1	5, 6	1, 2, 3, 4		
Inglewood #1	3, 4, 5			1
Inglewood #3	4.7	1, 2, 3, 4, 5	6, 7	
Lawndale #1	4, 5	1, 2, 3		6 1
Lomita #1 Long Beach #3	2, 3, 4, 5	1, 2, 3	4, 5	1
Long Beach #8		1, 2, 3	4, 5	4, 5
Manhattan Beach #1		3	5,6	7
PM-2 Police Station			1,2,4	3
PM-3 Madrid	3, 4	1, 2		
PM-4 Mariner	4	1	2	3
PM-5 Columbia Park	6	1, 2, 3, 4	5	
PM-6 Madrona Marsh	6	2, 4	3, 5	1
Westchester #1		1, 2, 3, 4, 5	10045	
Wilmington #1 Wilmington #2		1	1, 2, 3, 4, 5	
Wilmington #2		1	2, 3, 4, 5	

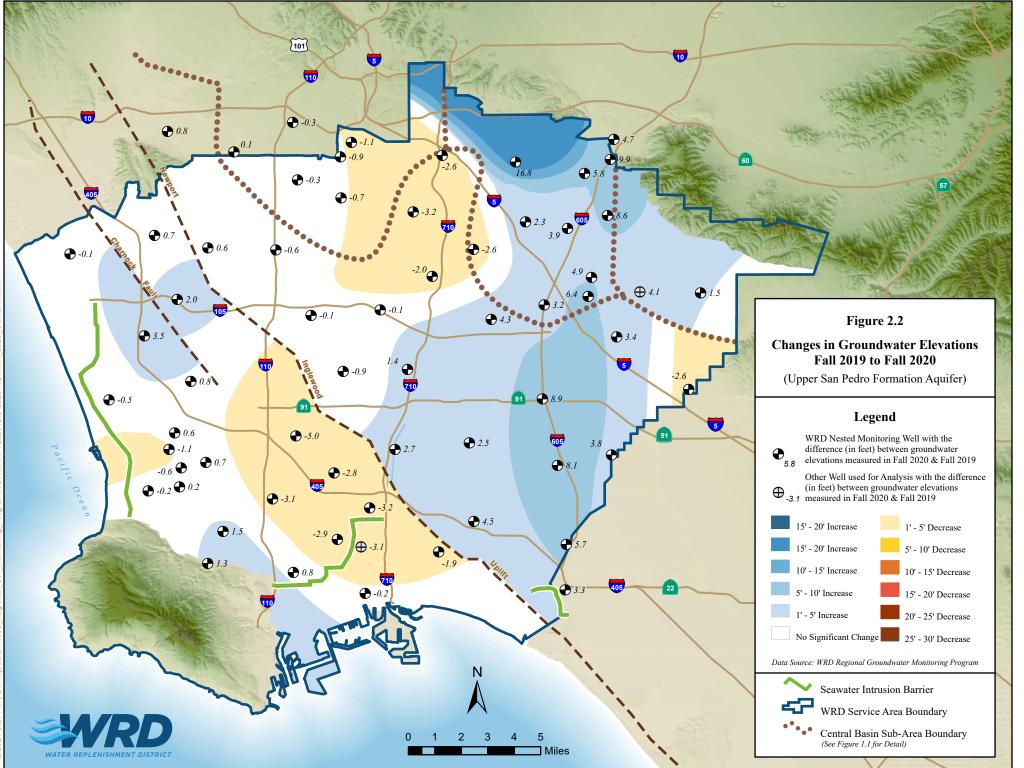
Note - Values shown above represent the various zones at each nested well location classified by major mineral water quality group.

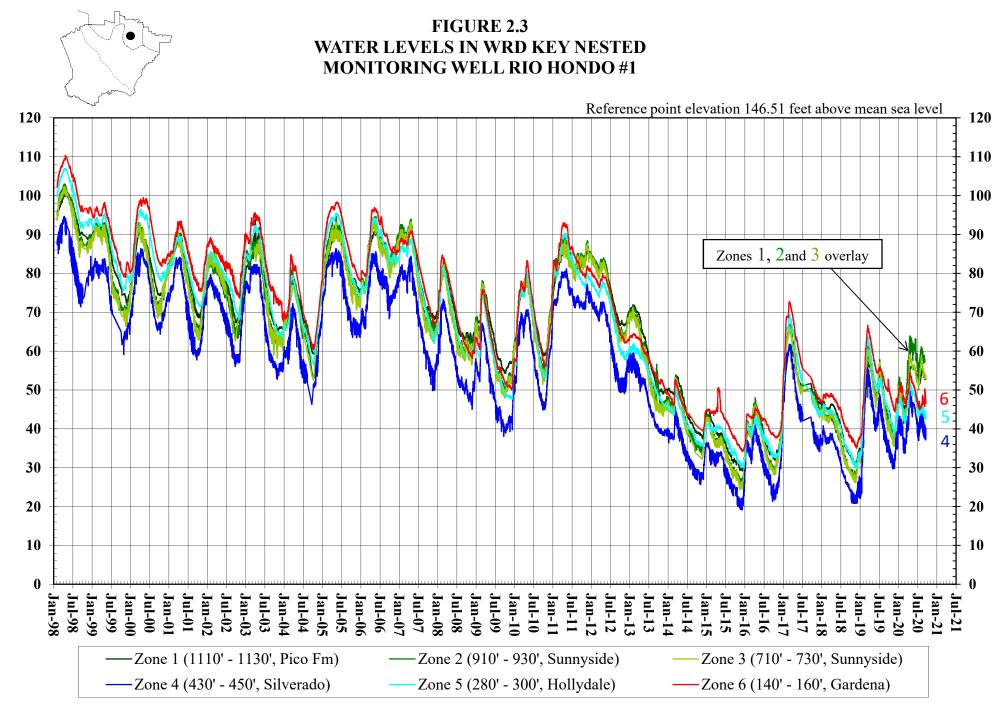

FIGURES

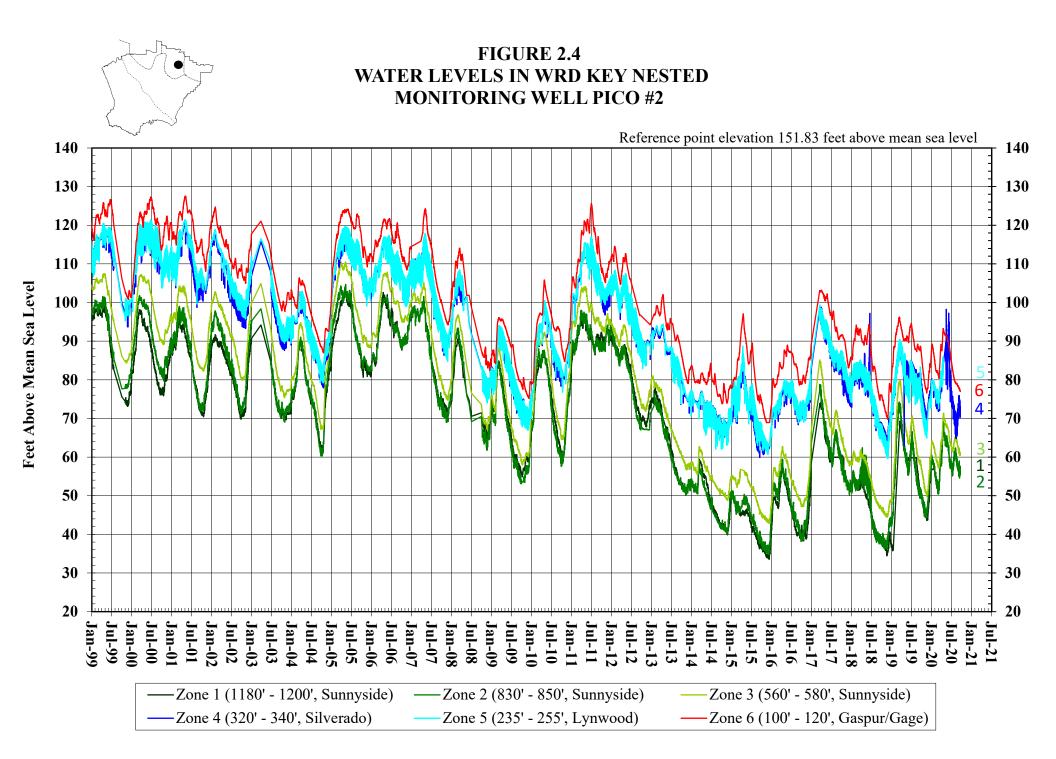


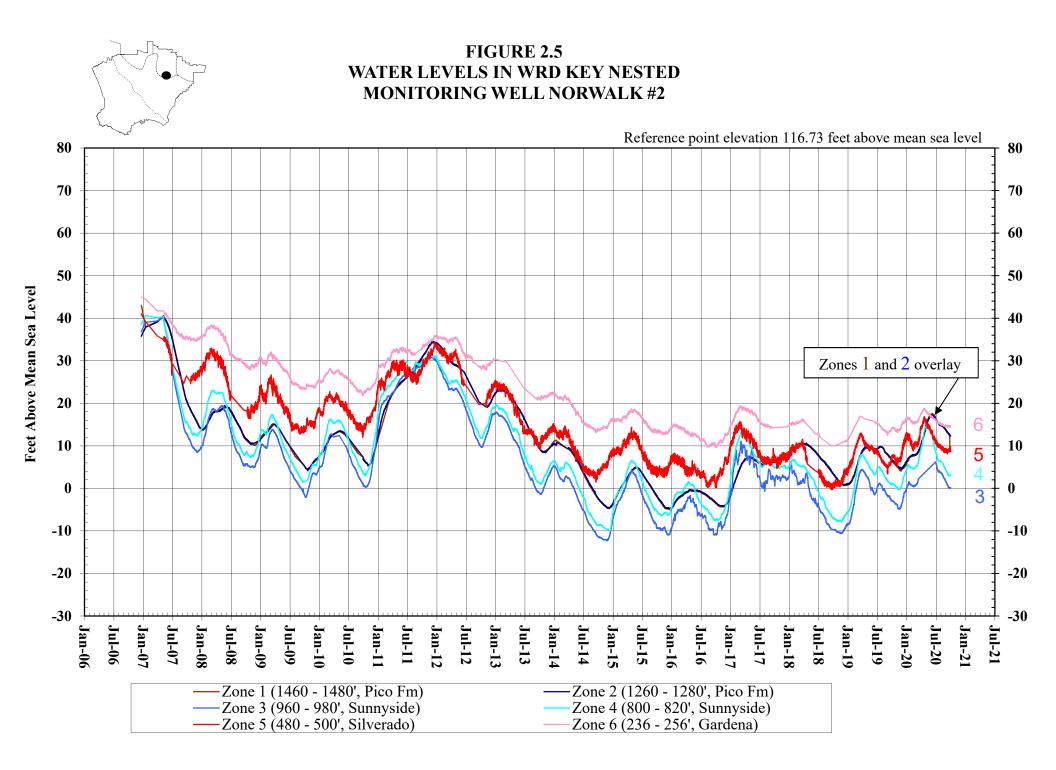

FIGURE 1.2 NESTED WELLS vs. PRODUCTION WELLS FOR AQUIFER-SPECIFIC DATA

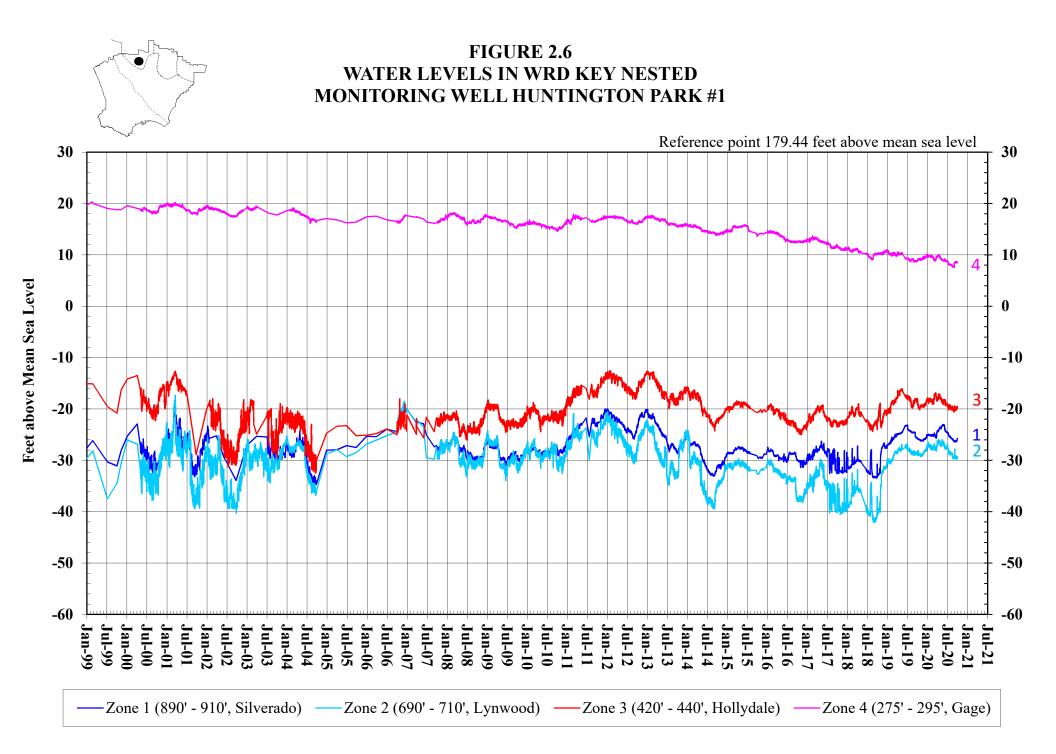


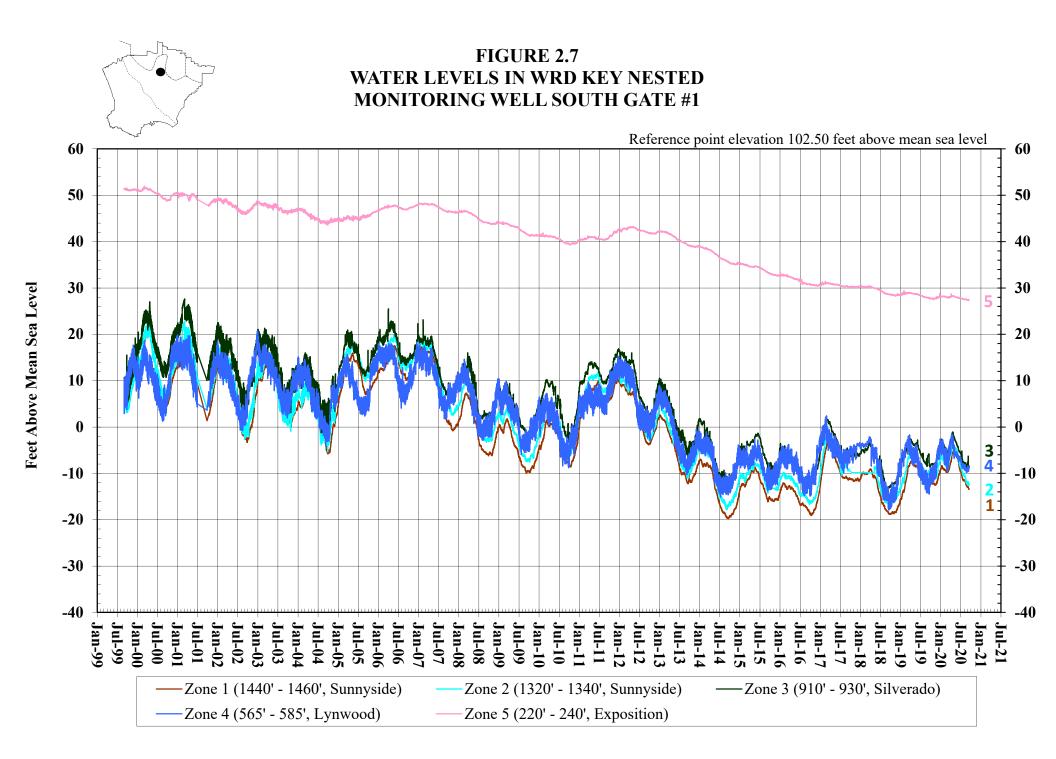

Production wells are typically perforated across multiple aquifers producing an average water quality. Nested monitoring wells are screened in a portion of a specific aquifer, providing water quality and water level information for the specific zone.



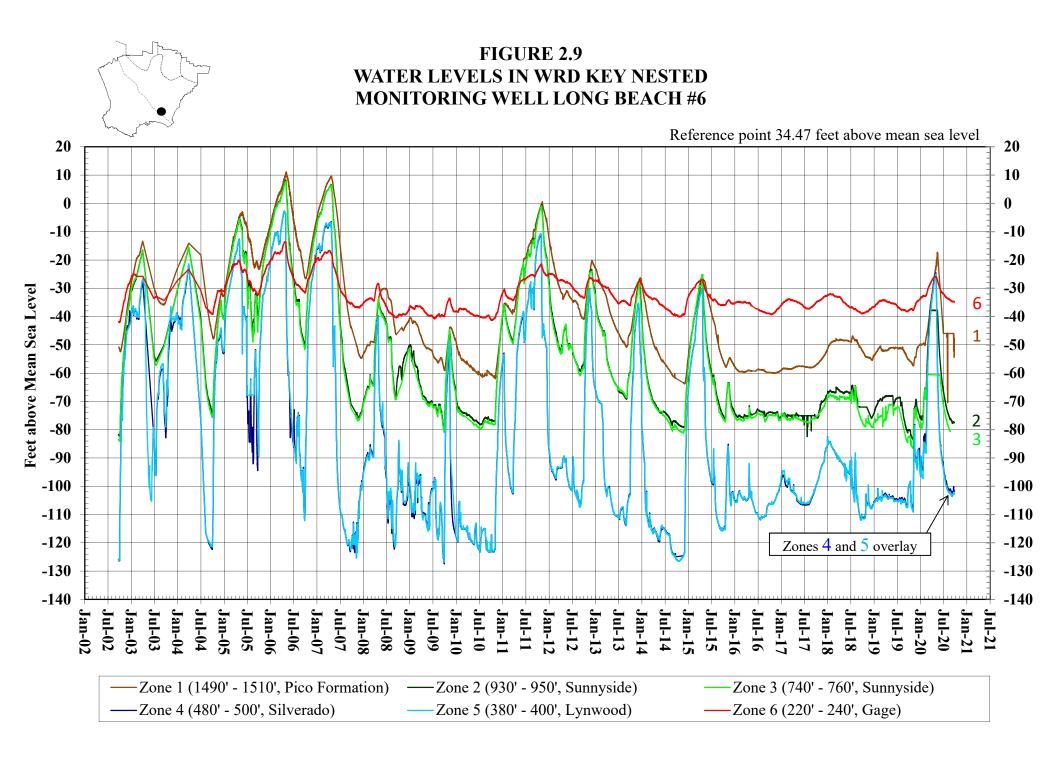


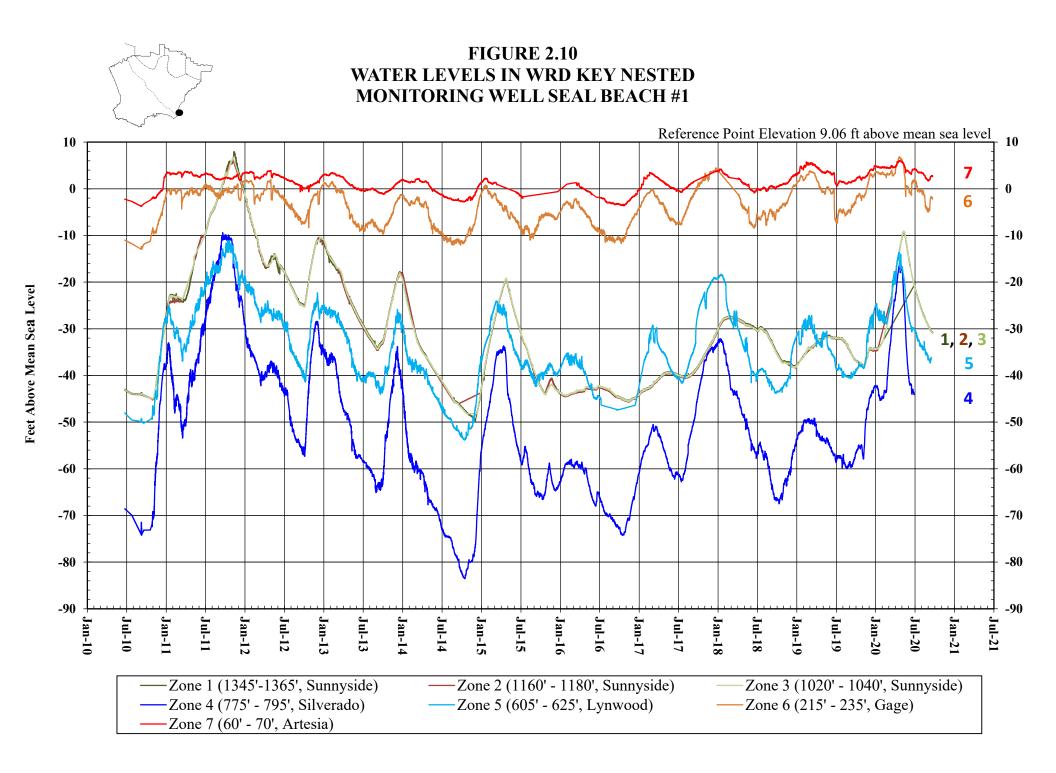


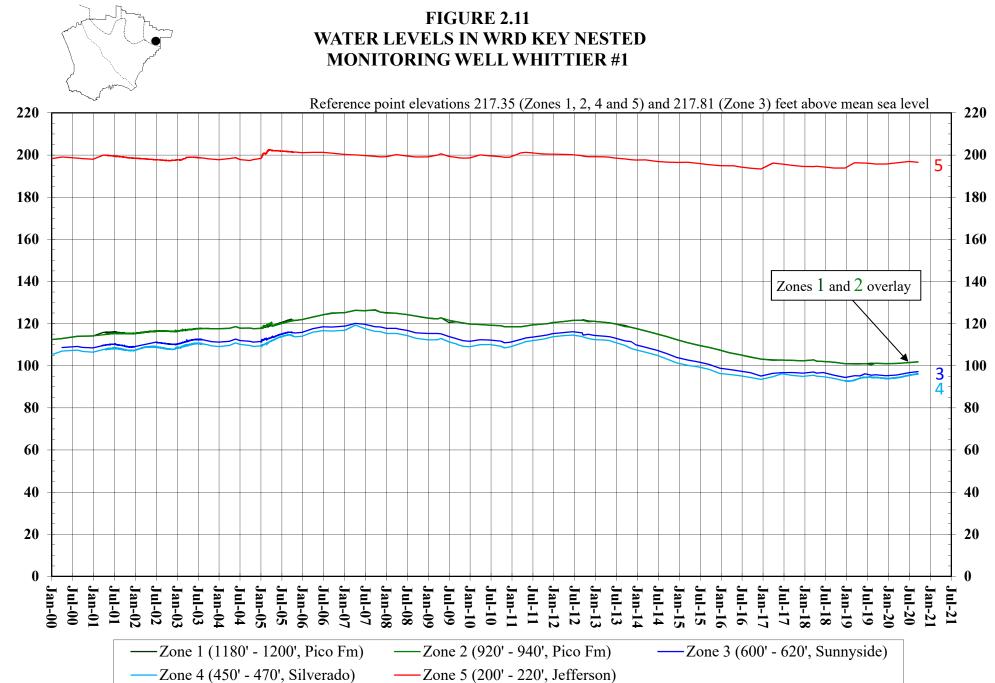


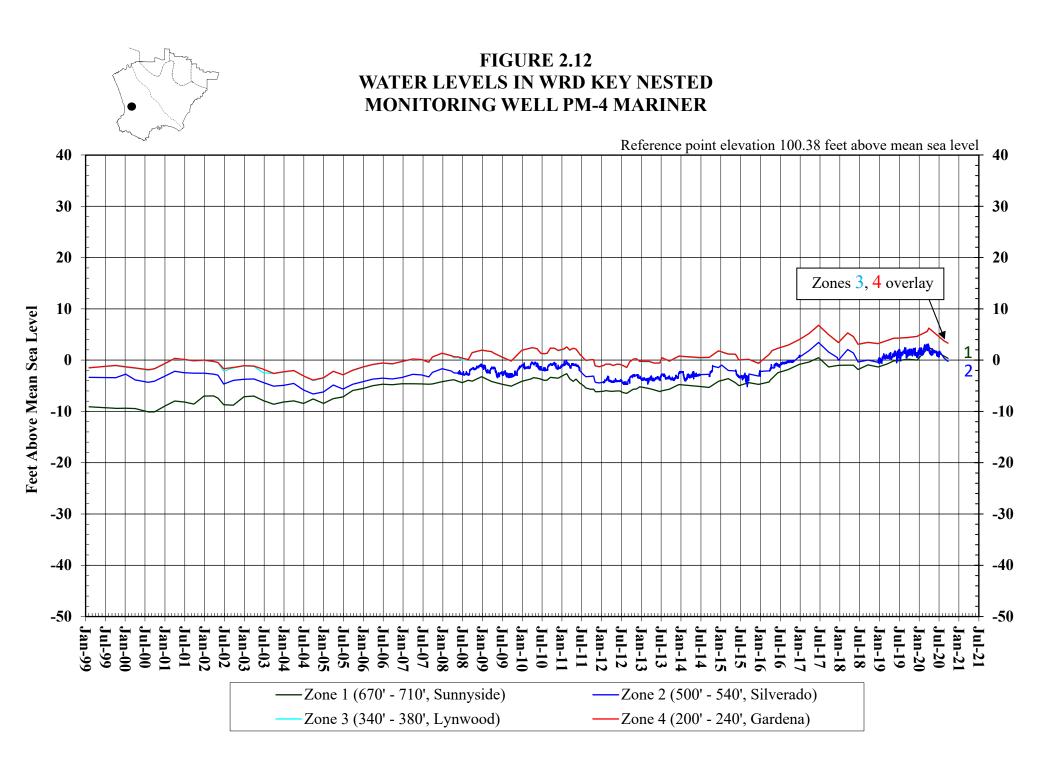


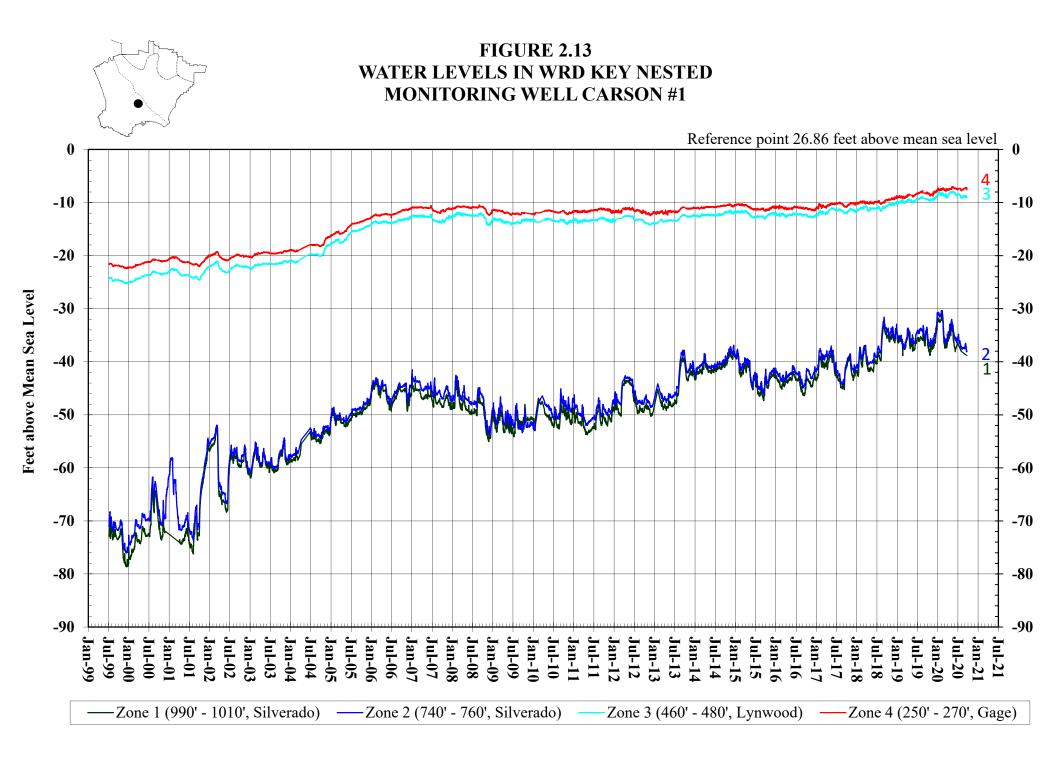

Feet Above Mean Sea Level

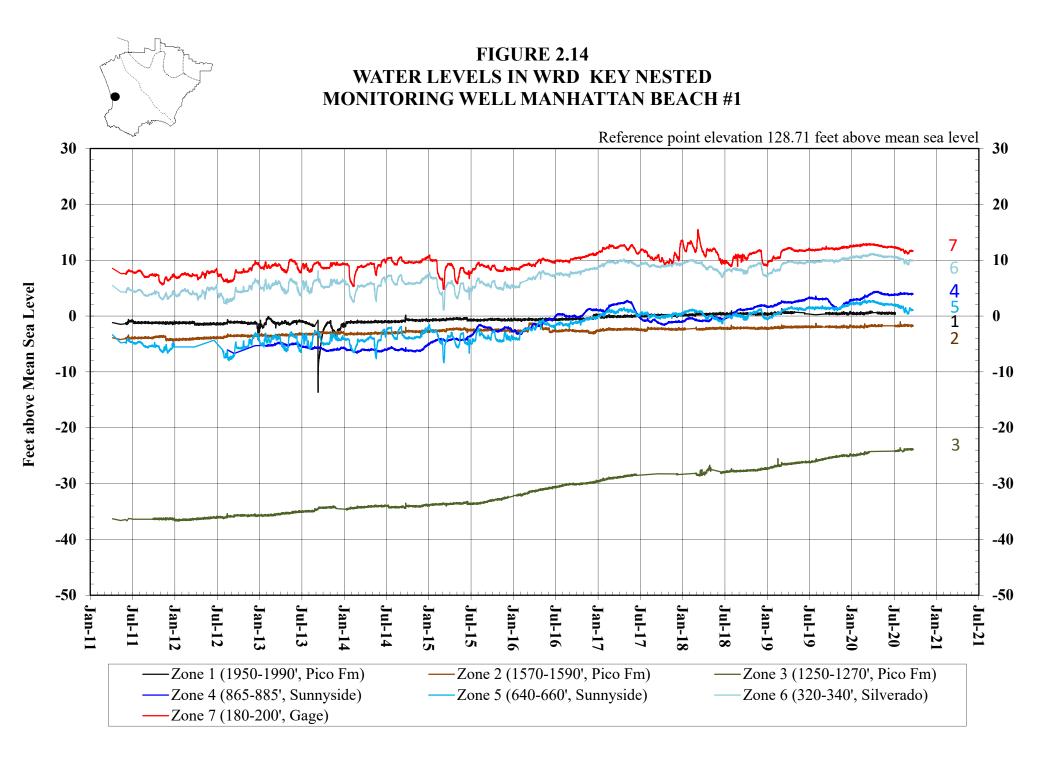


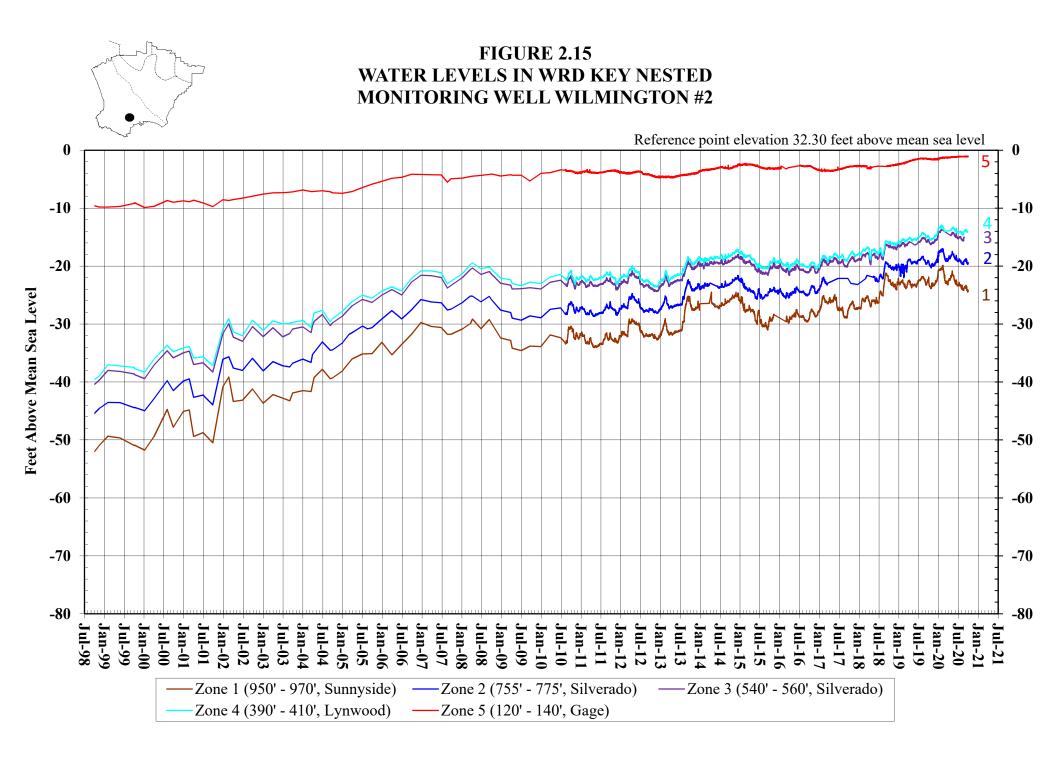


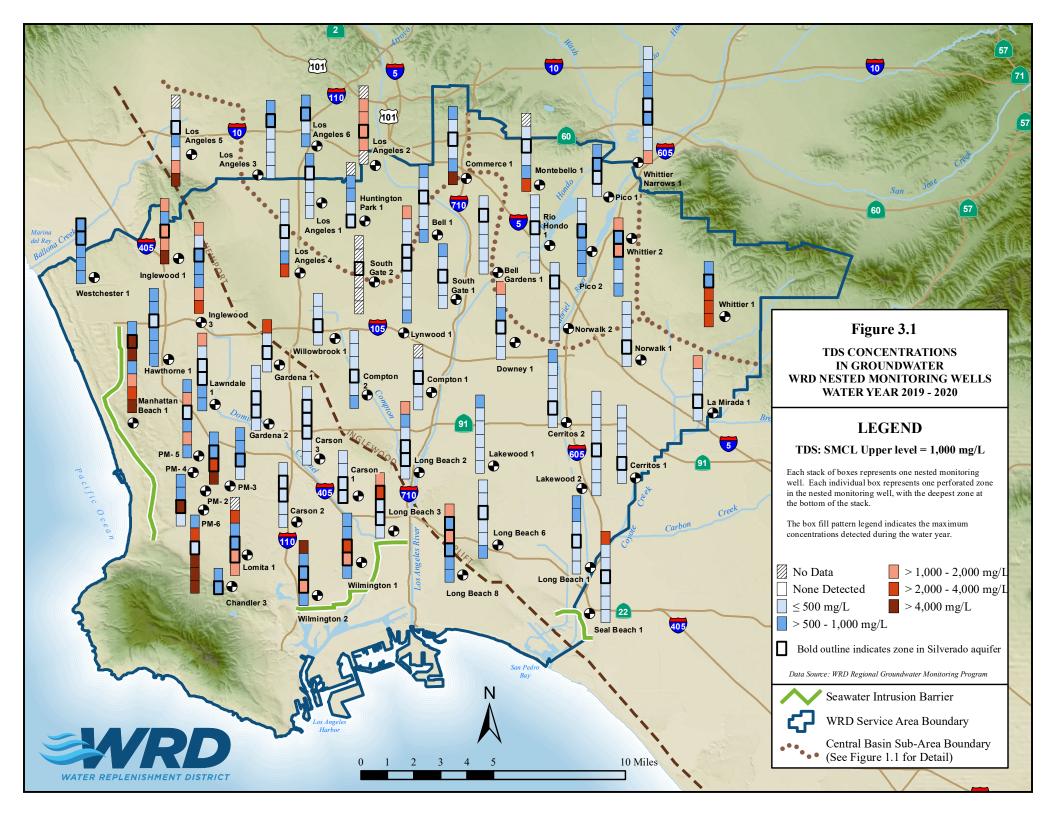


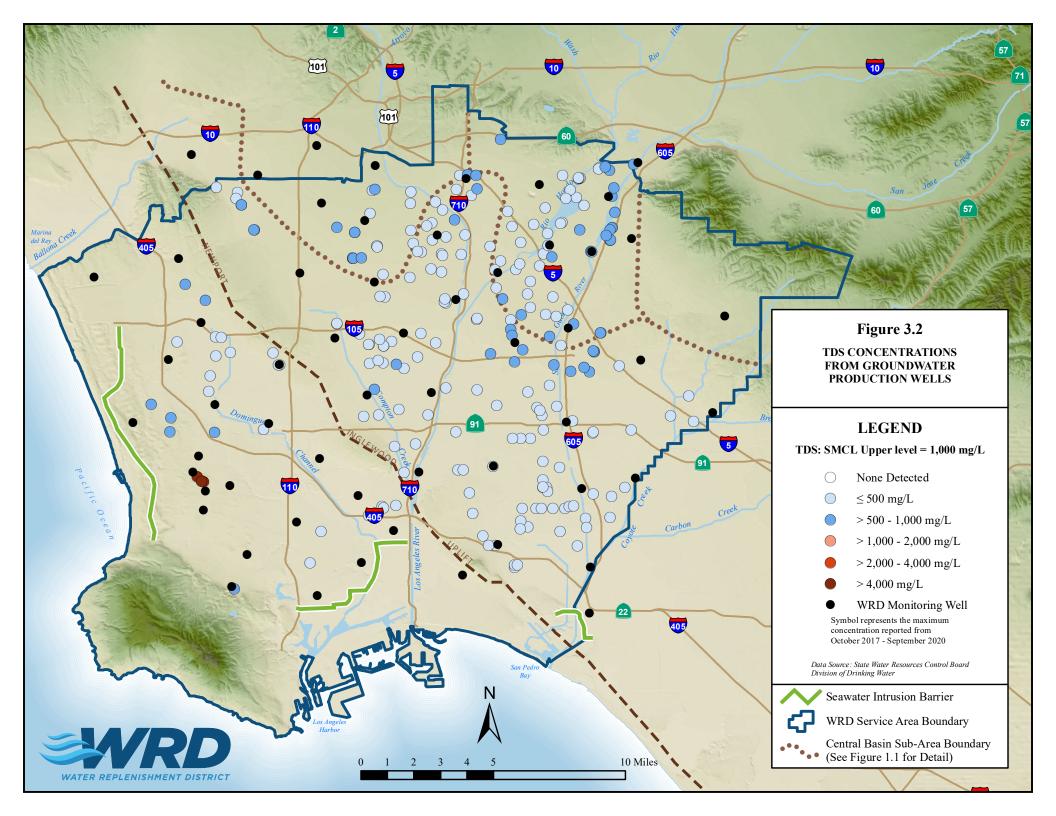


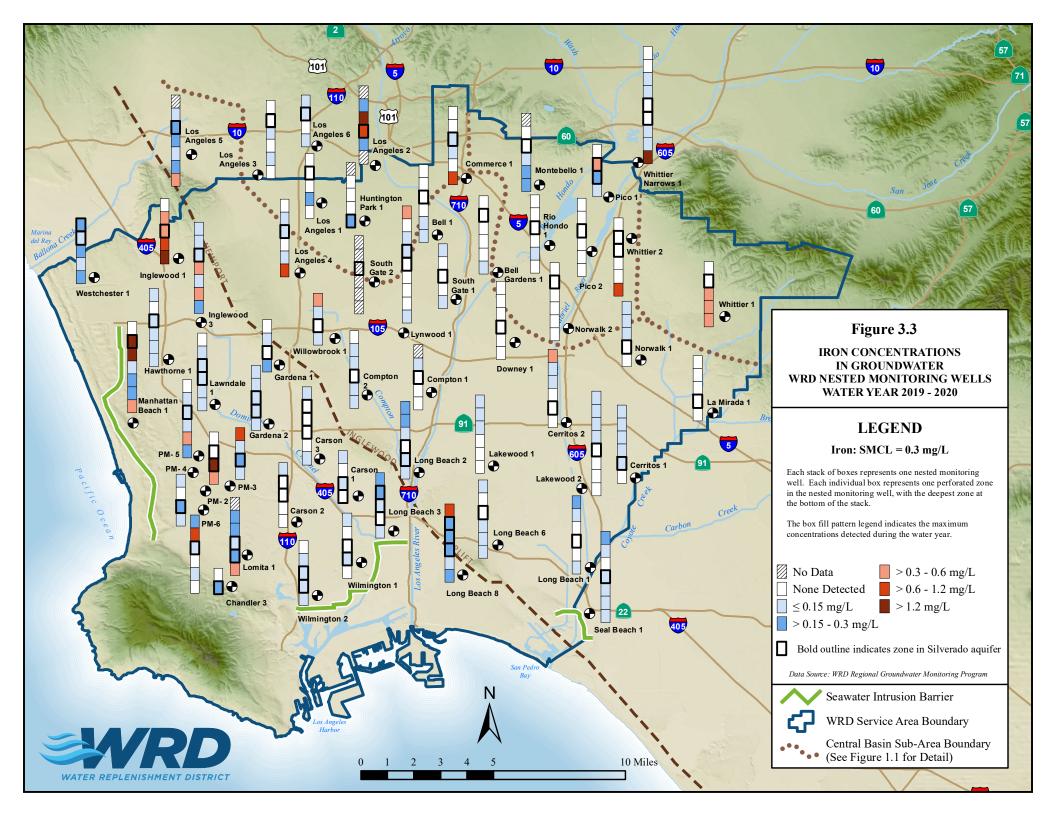


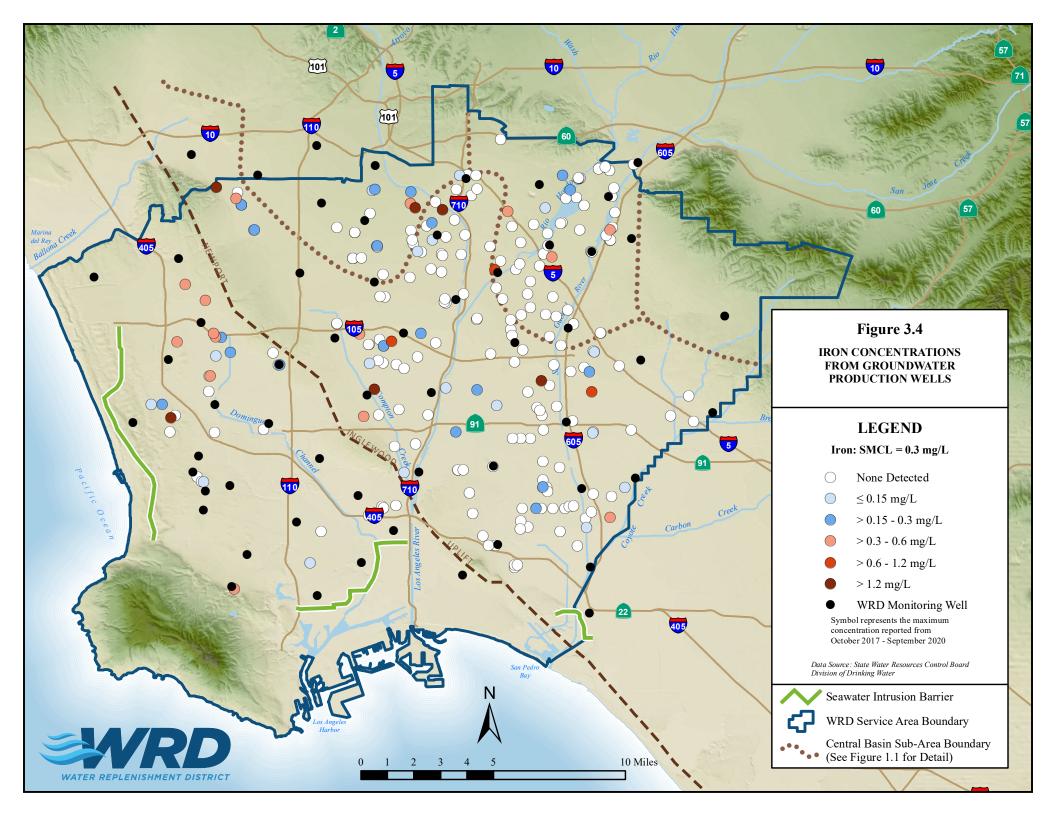


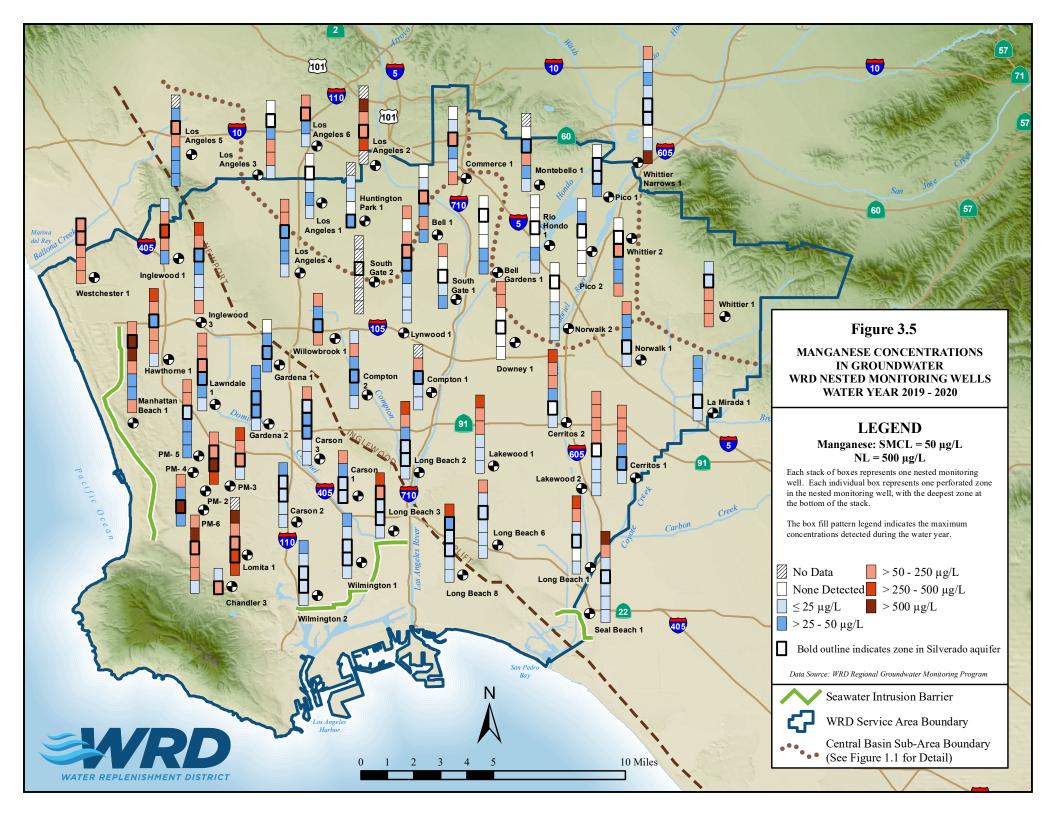


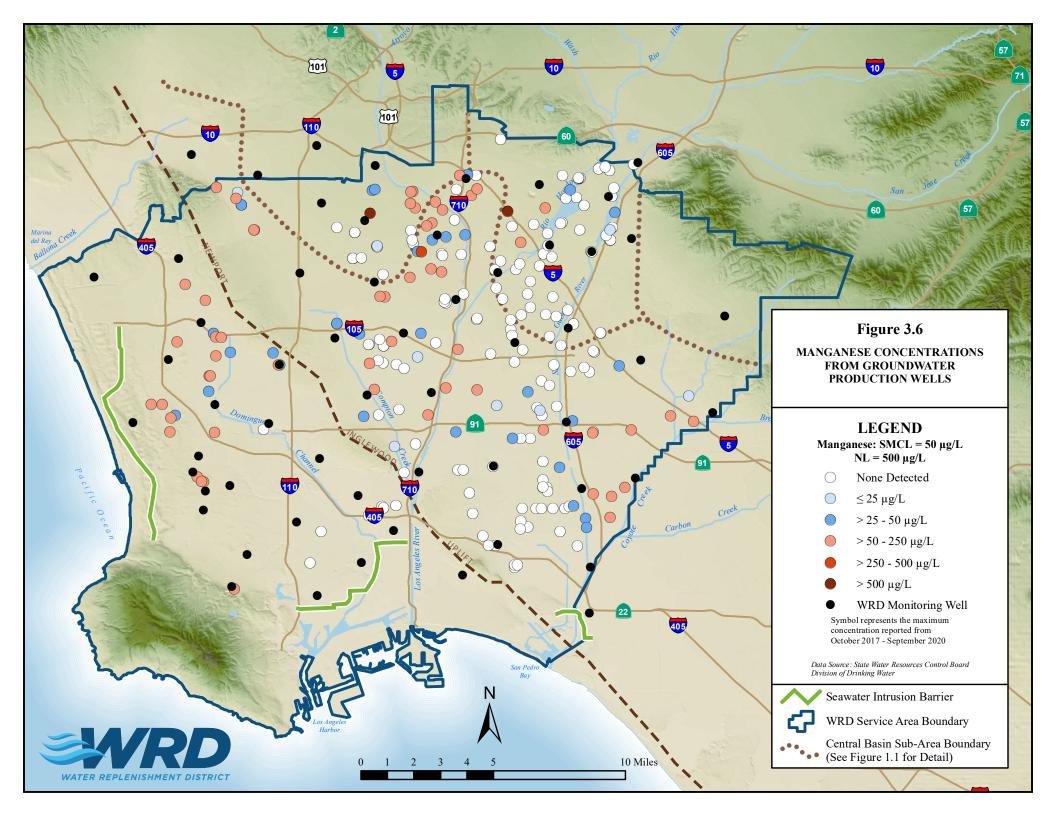

Feet Above Mean Sea Level

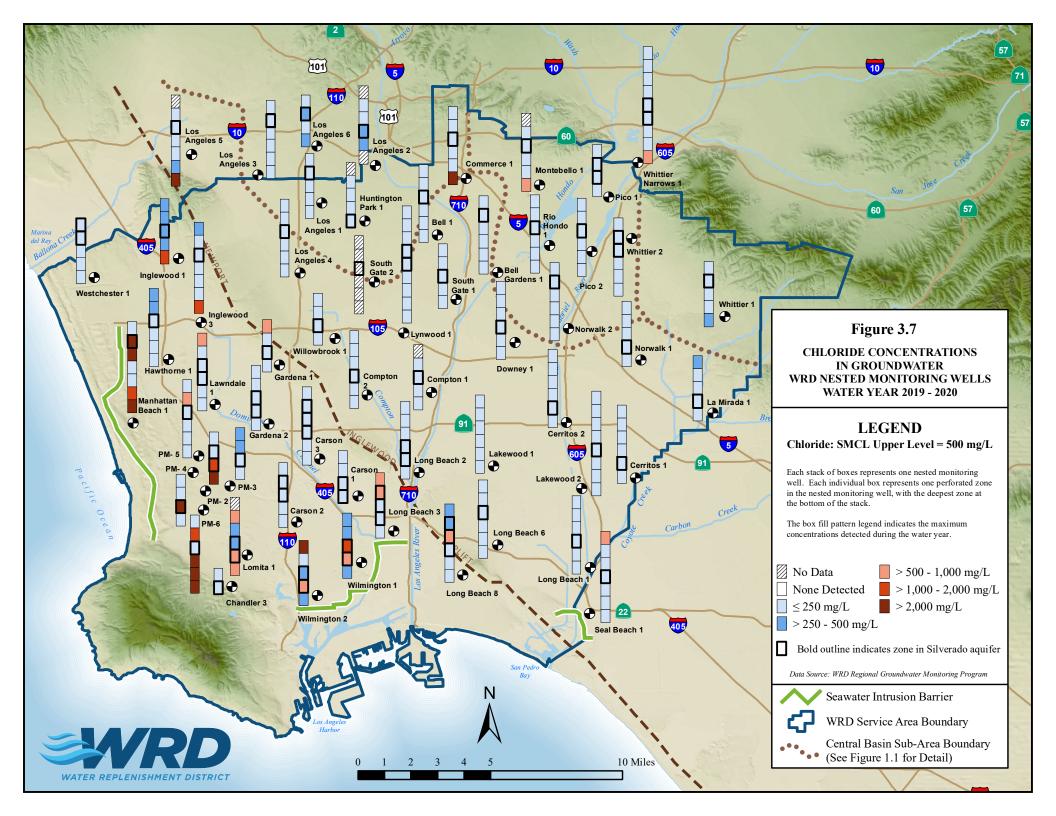


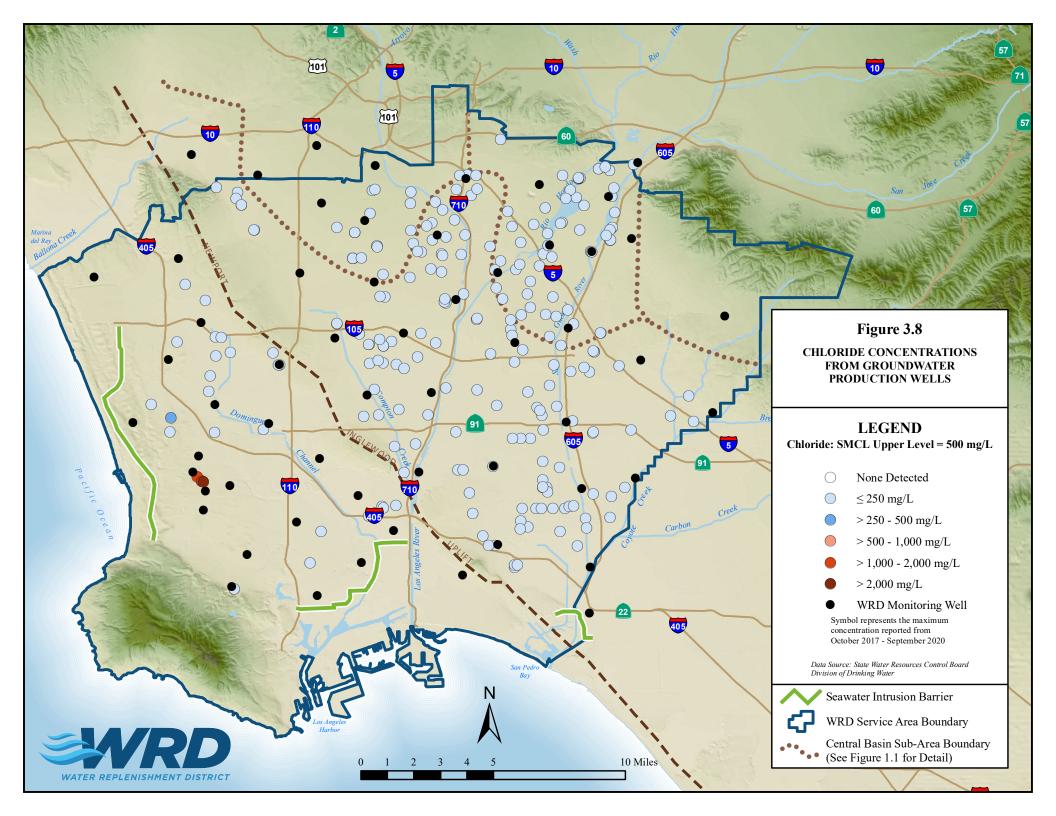


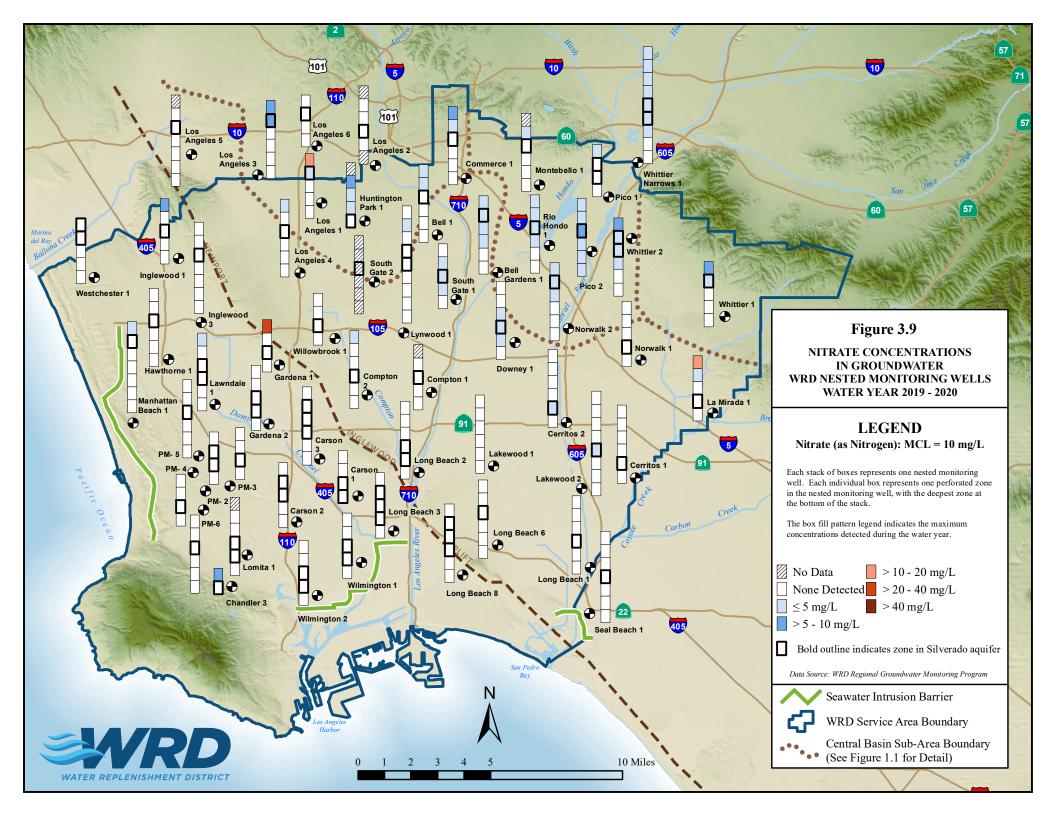


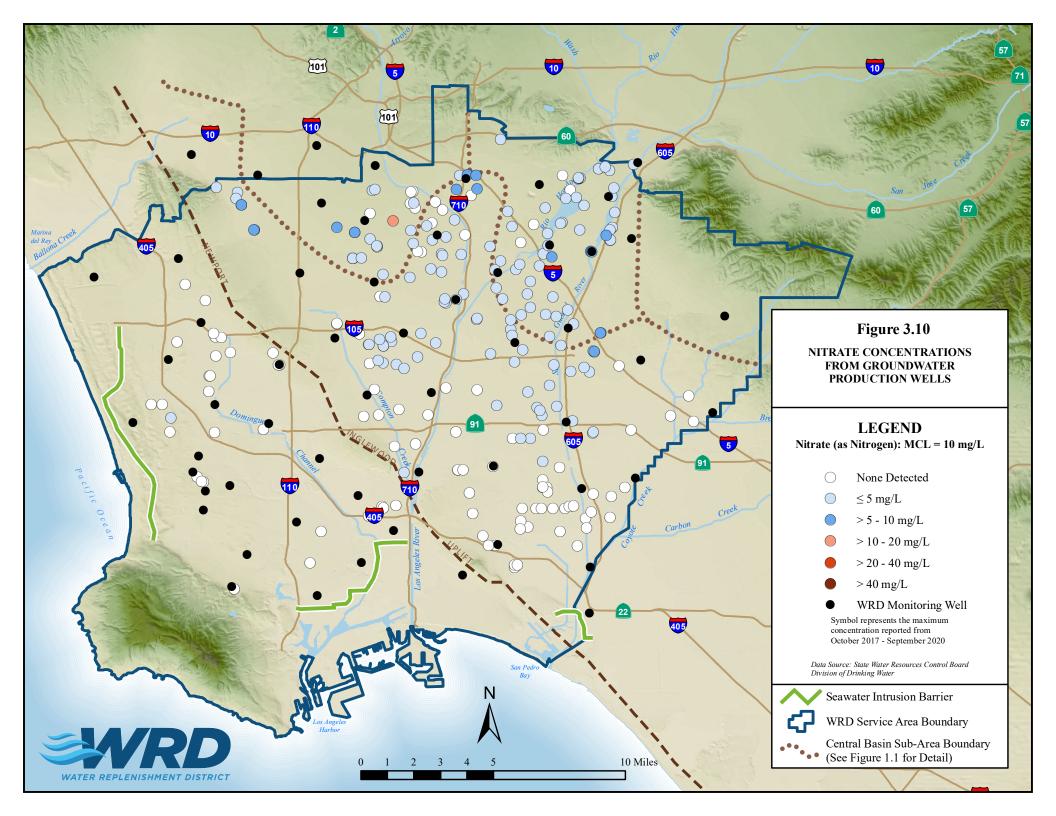


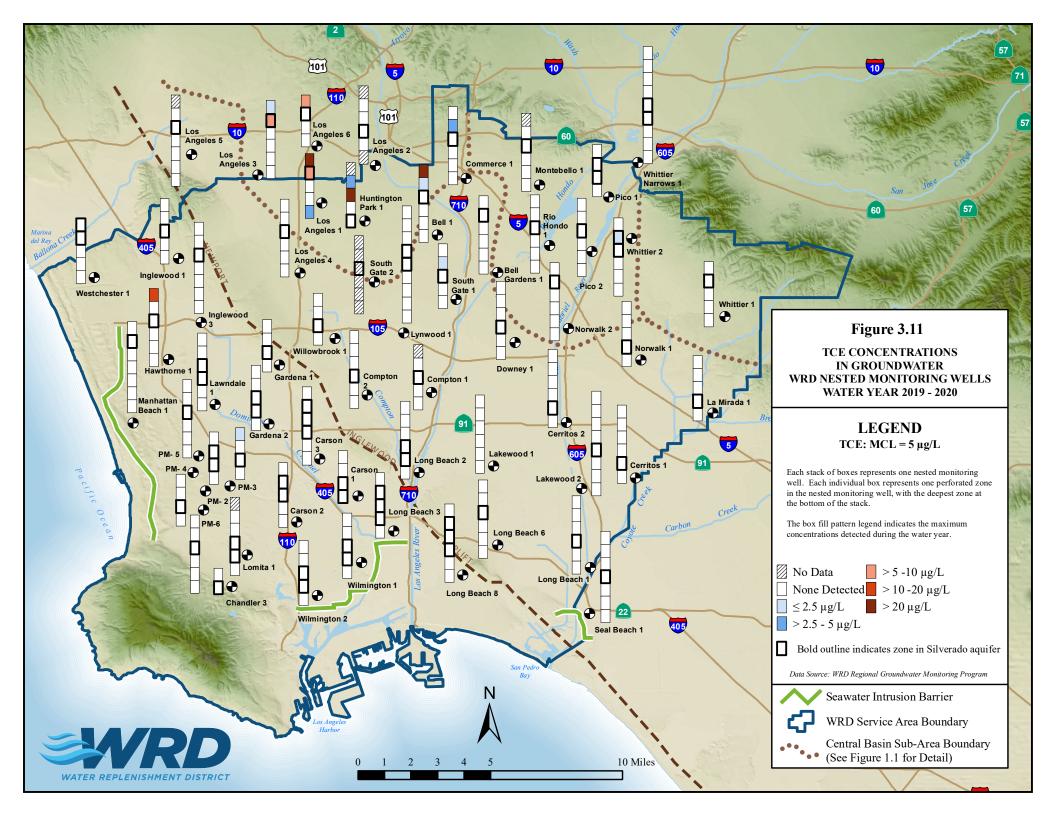


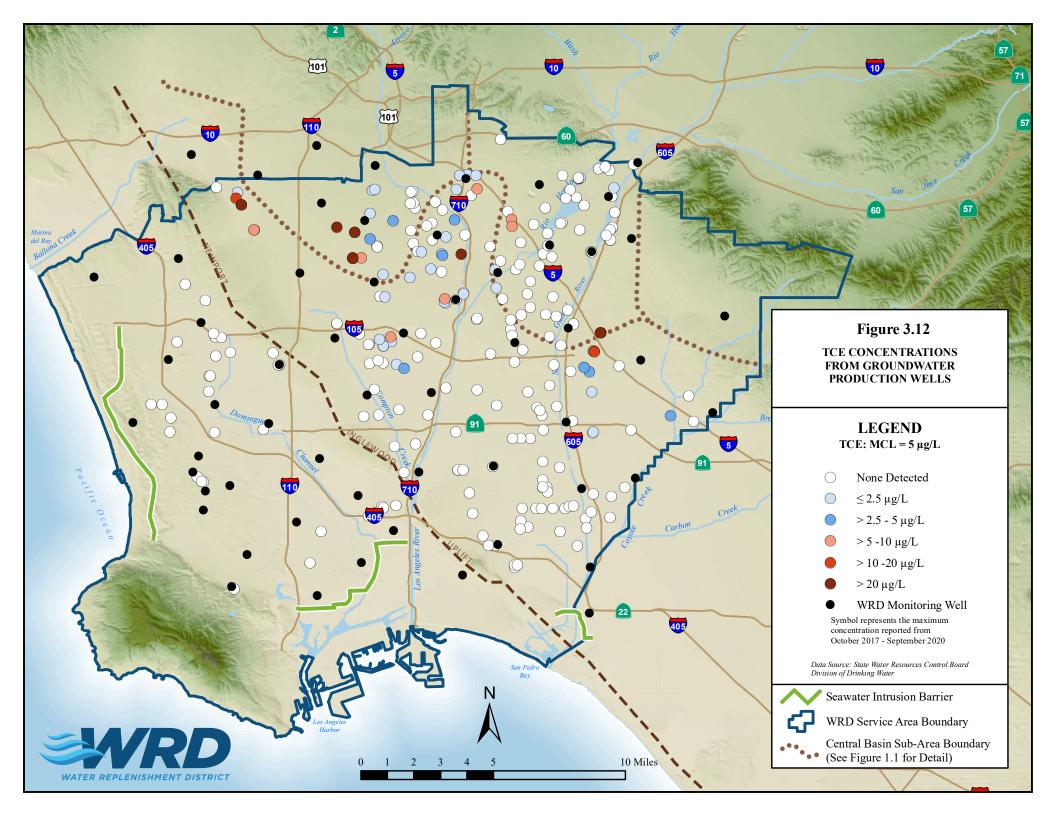


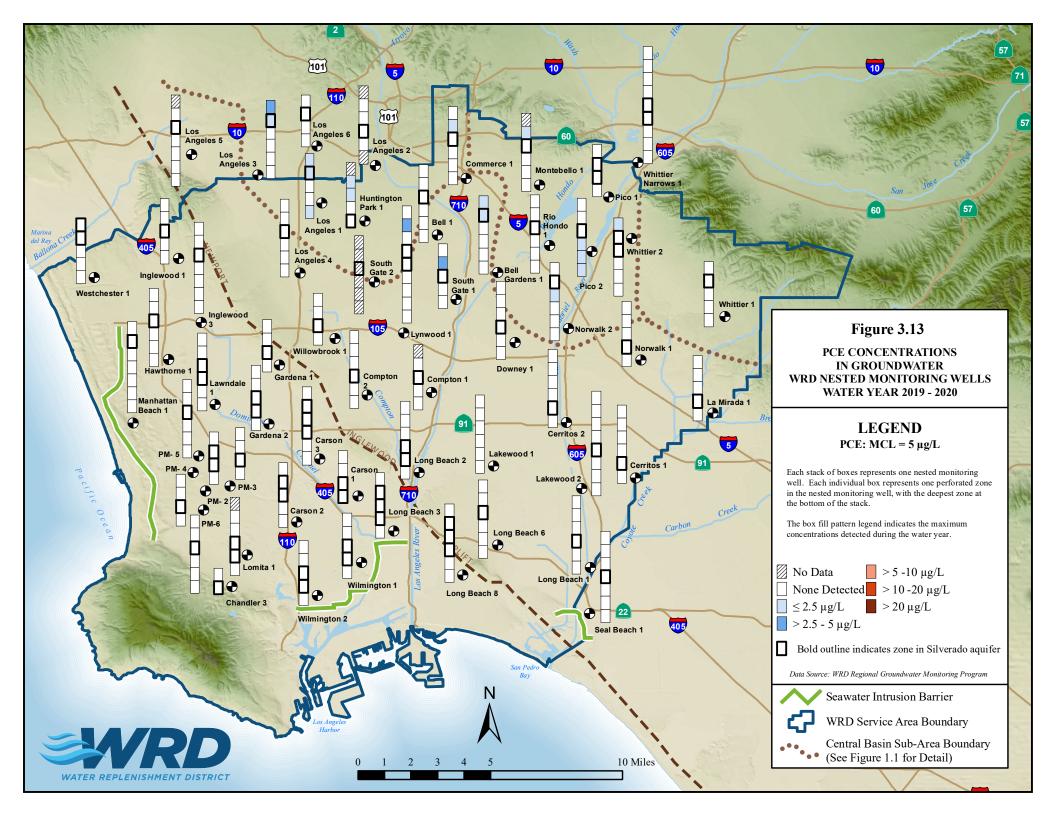


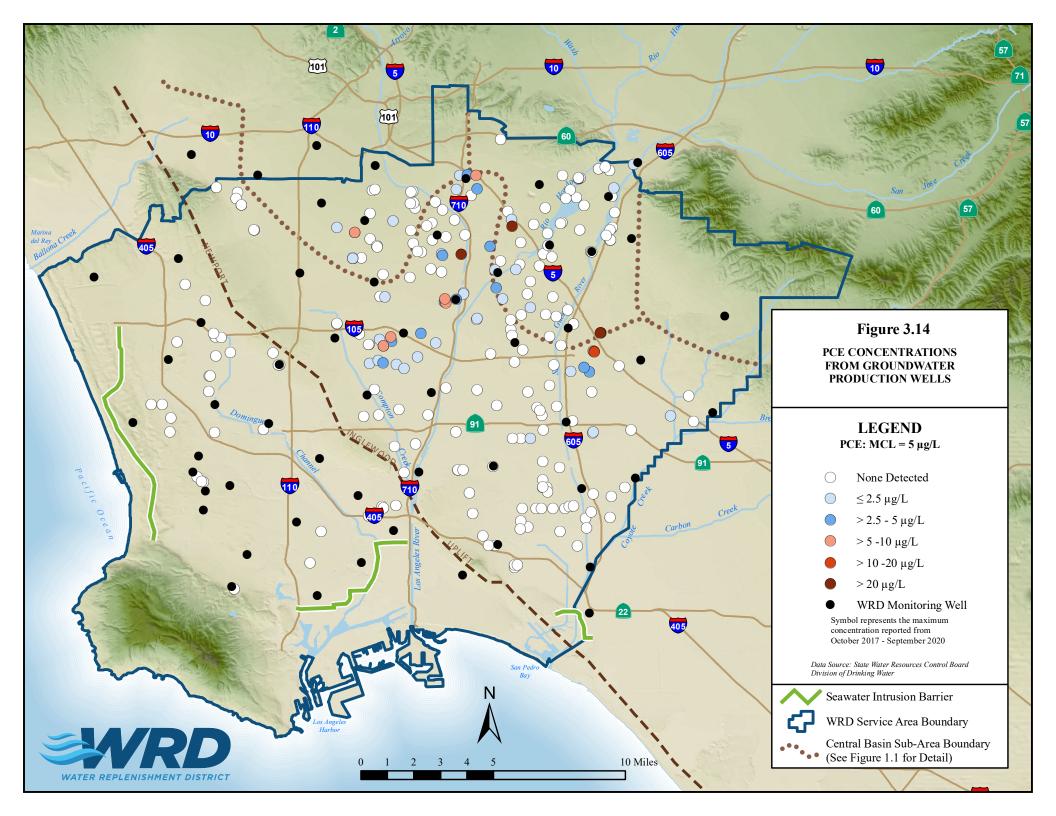


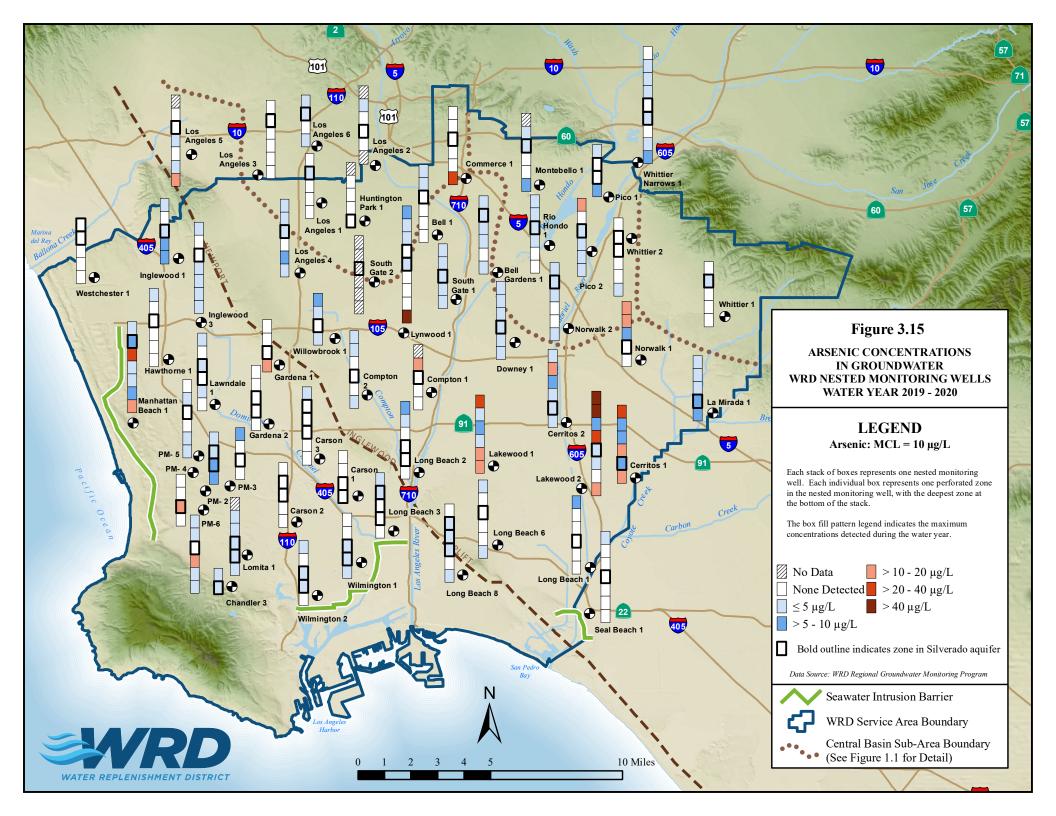


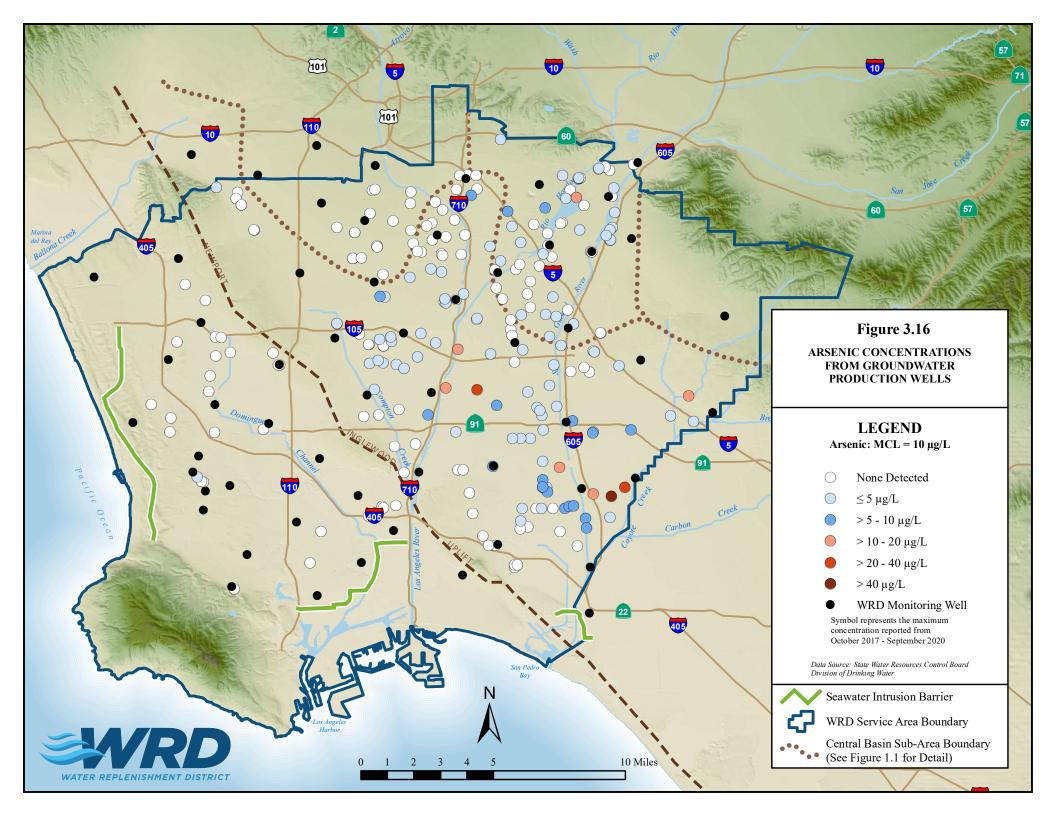


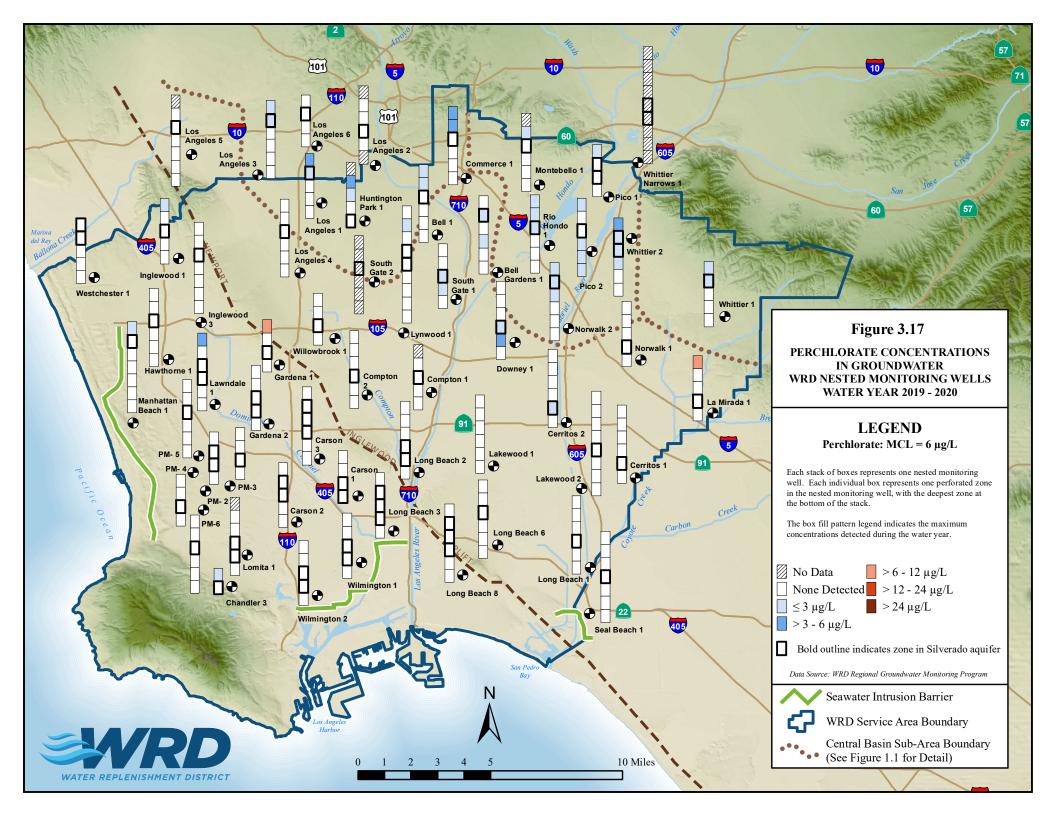


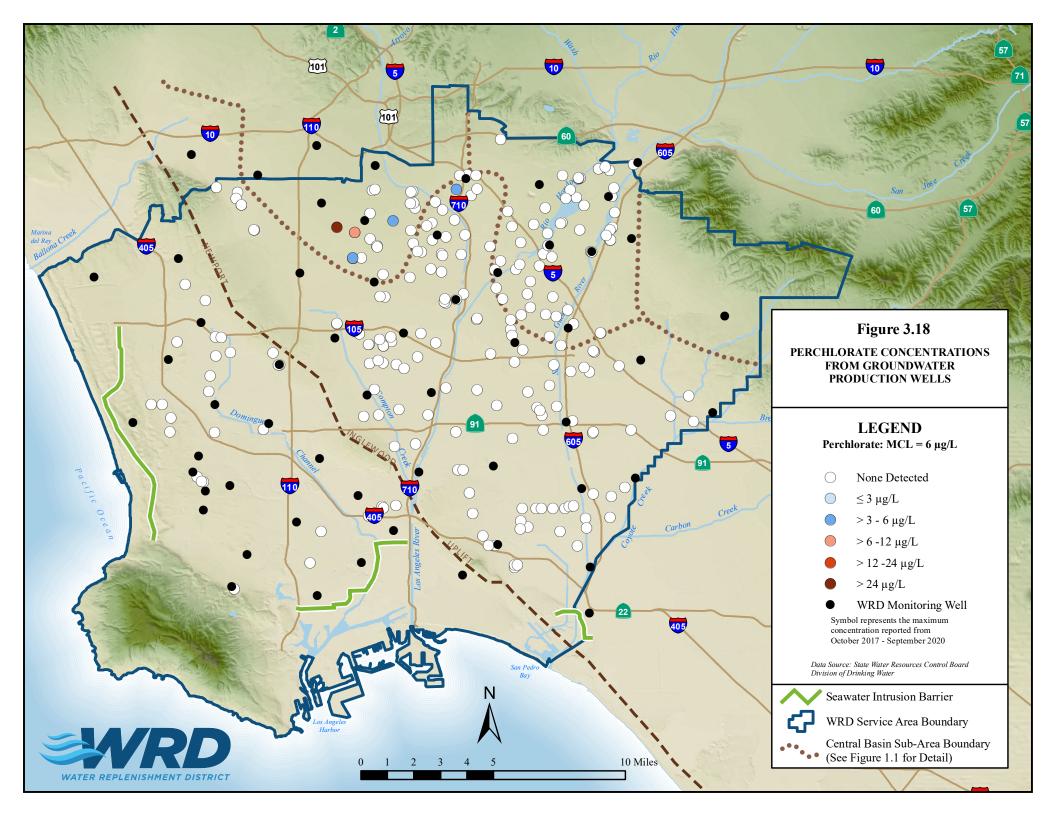


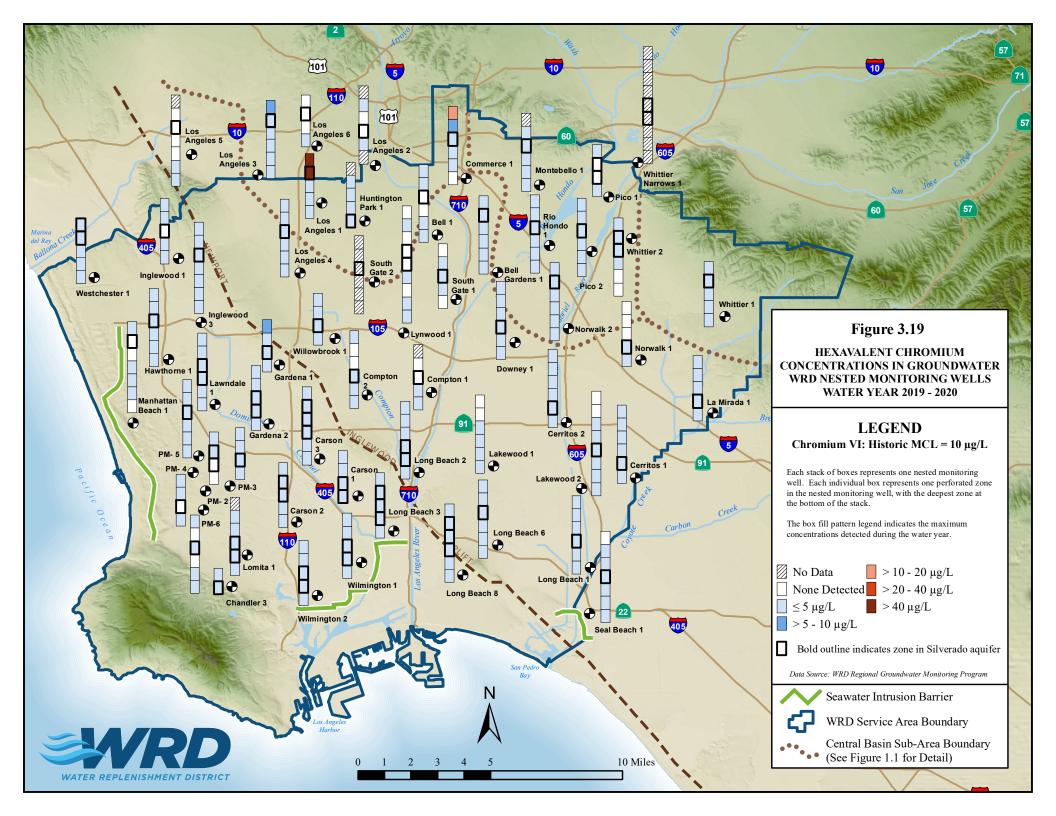


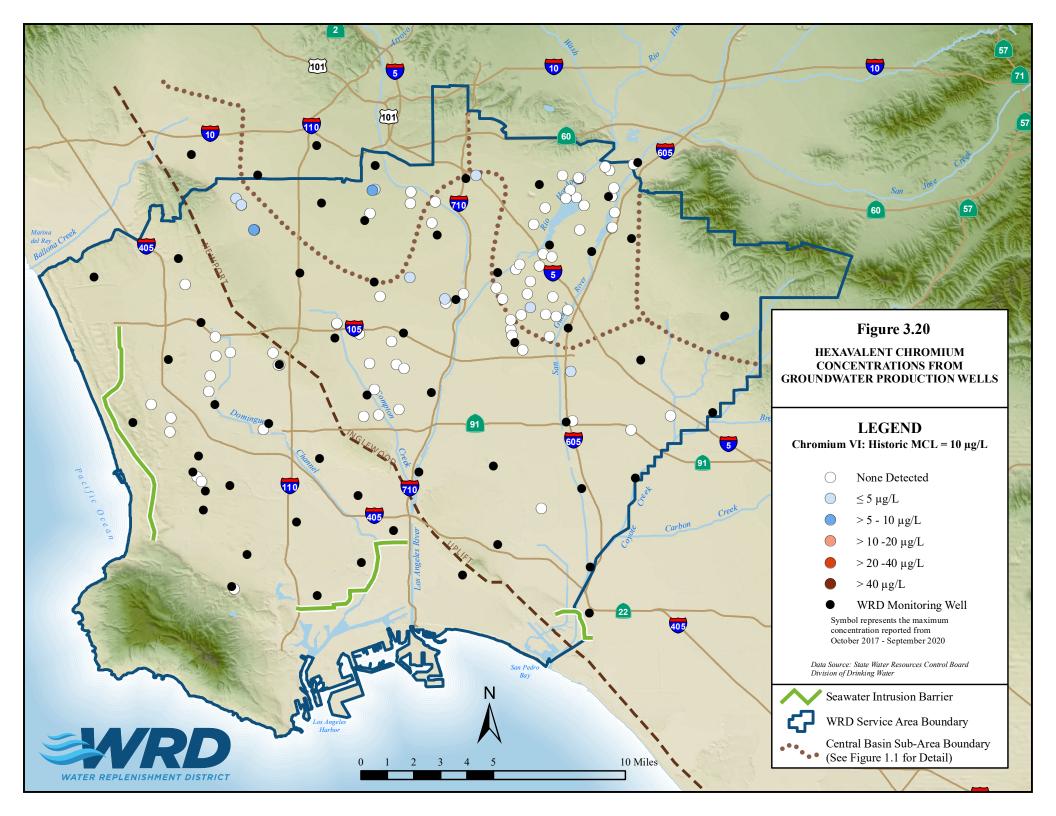


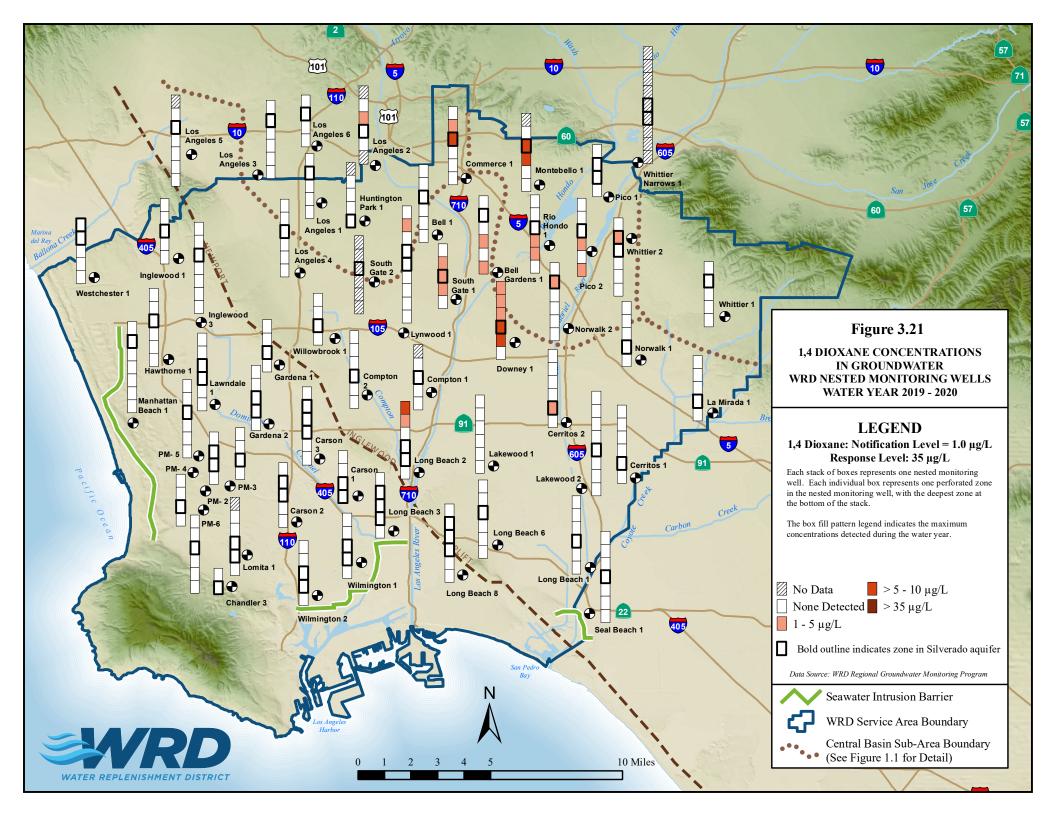


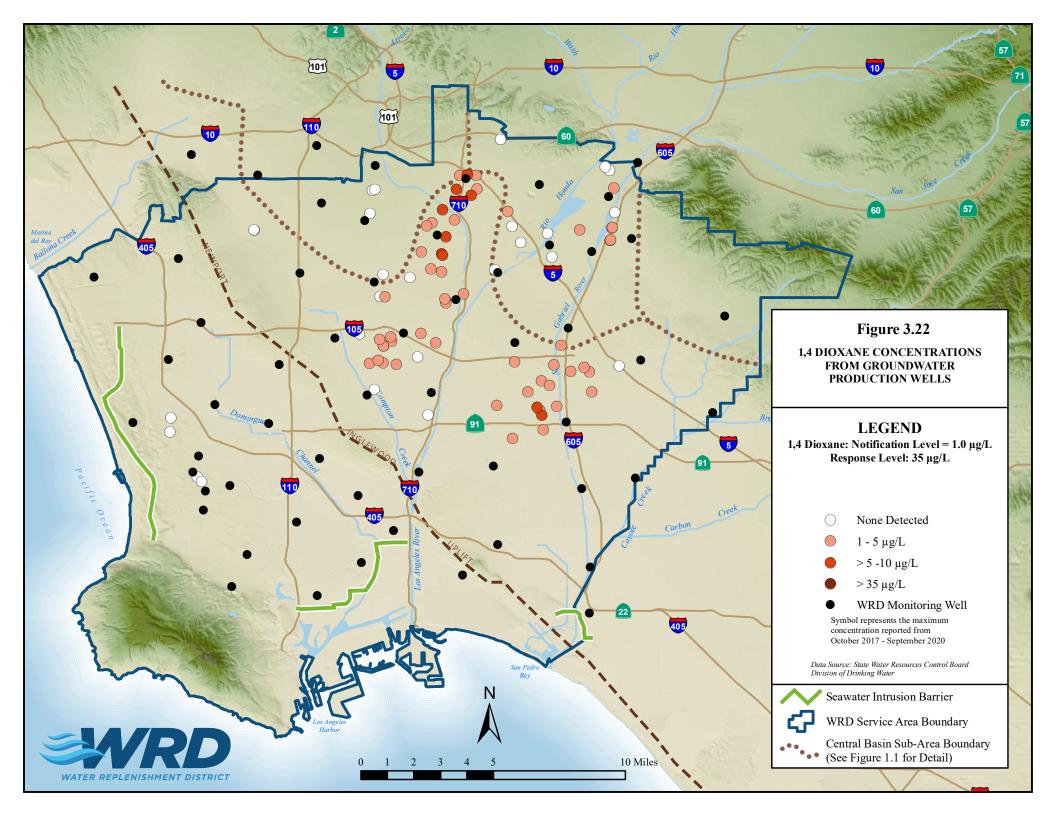


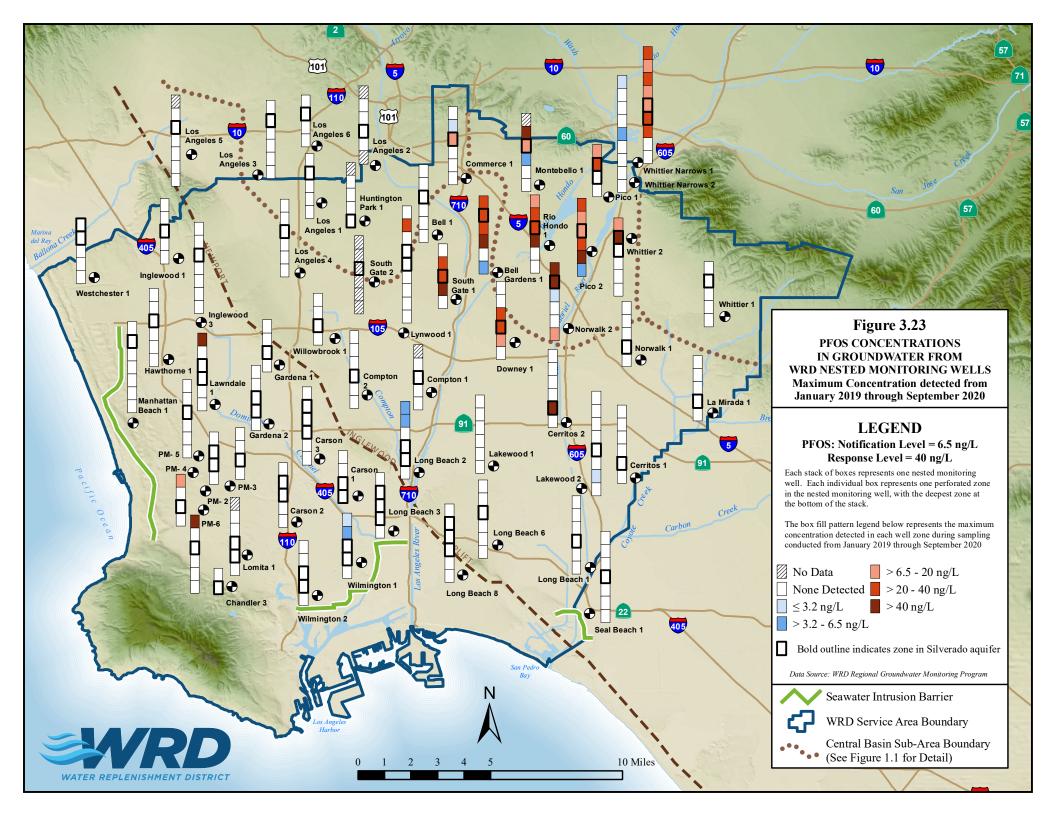


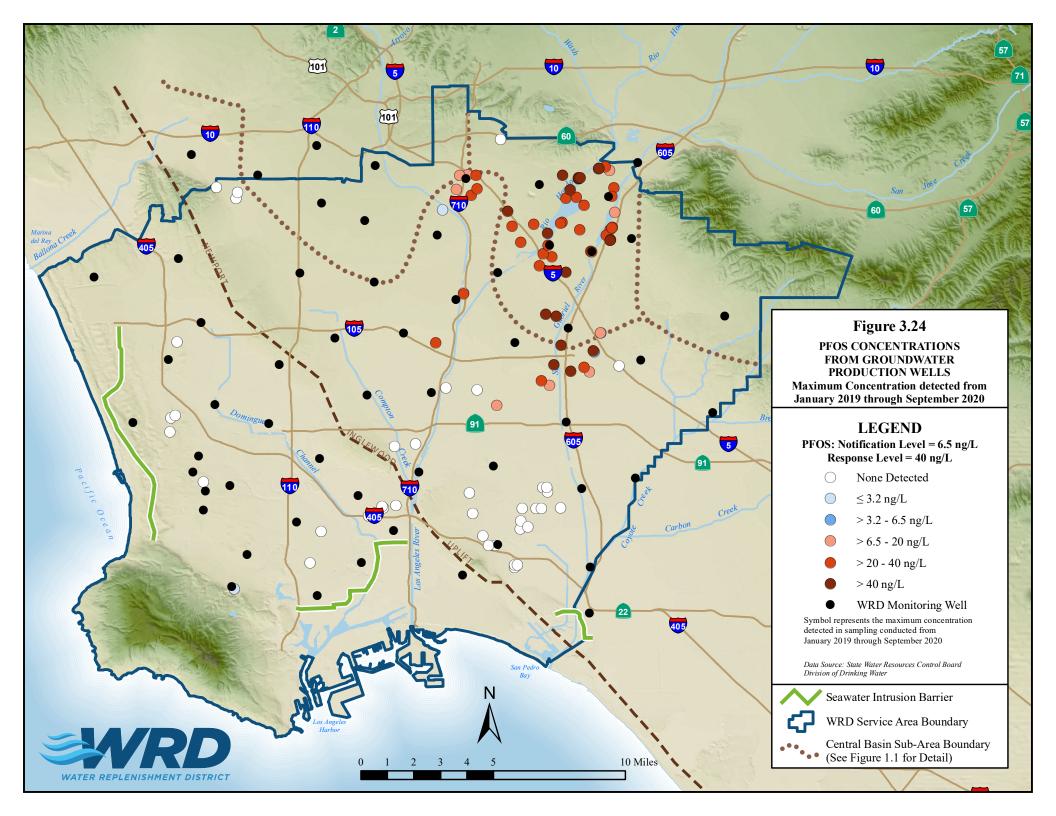


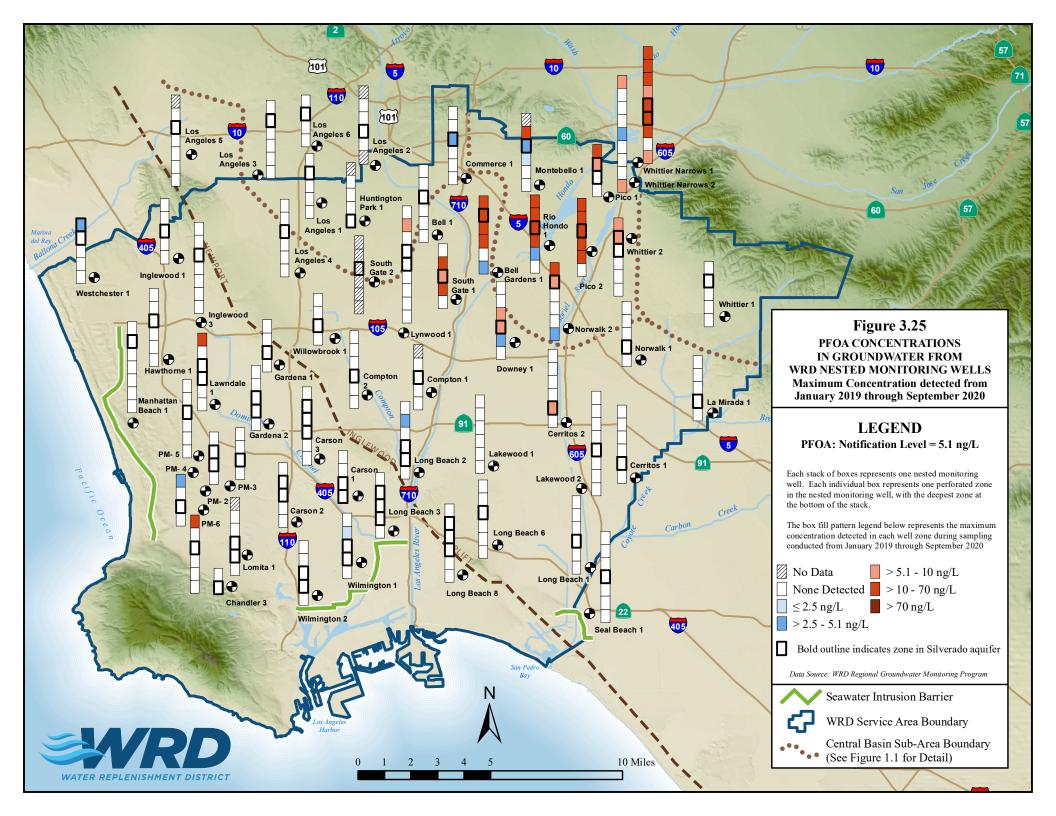


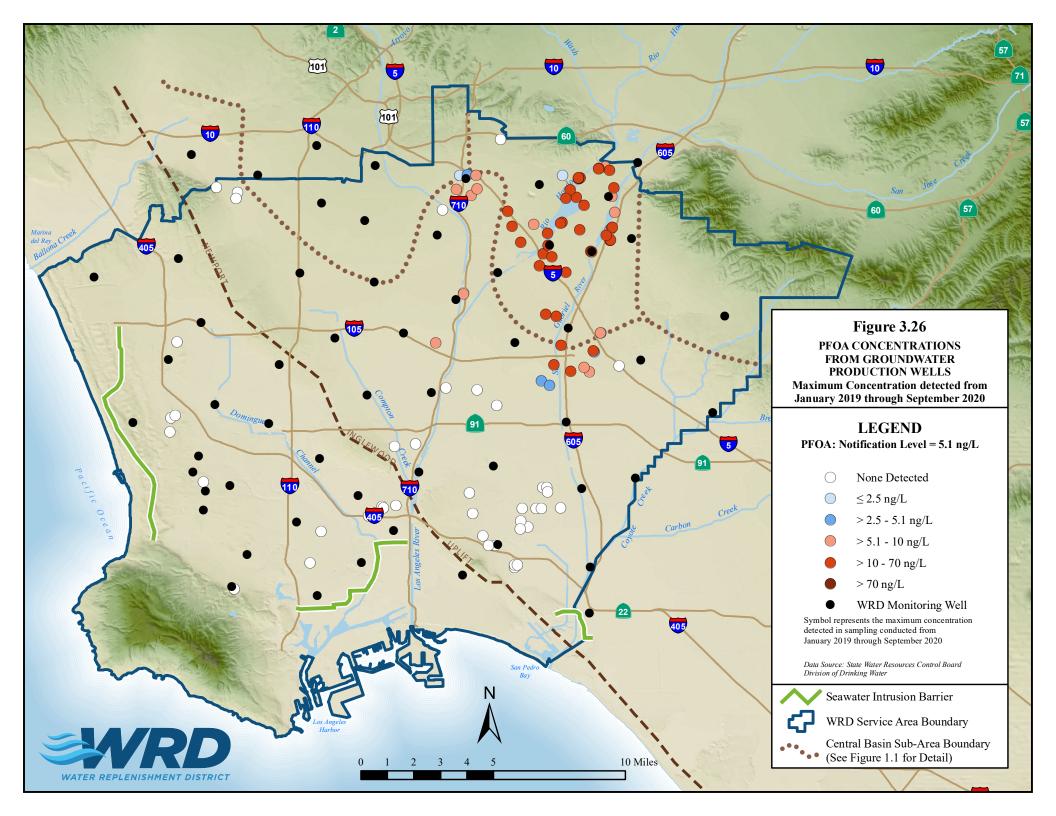




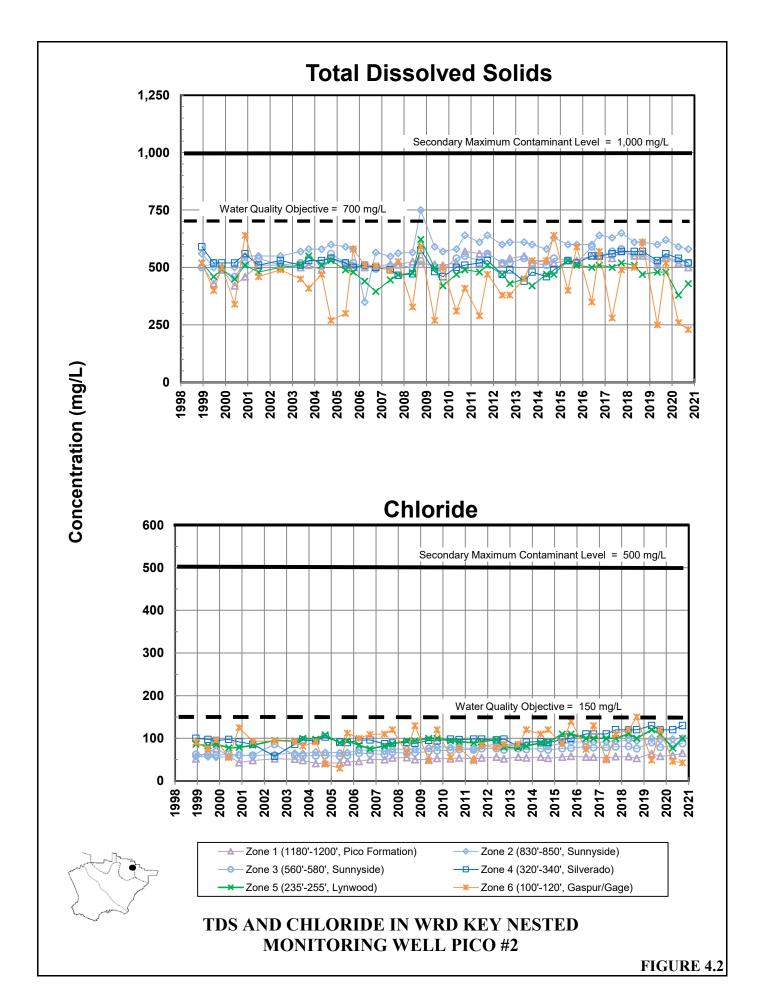


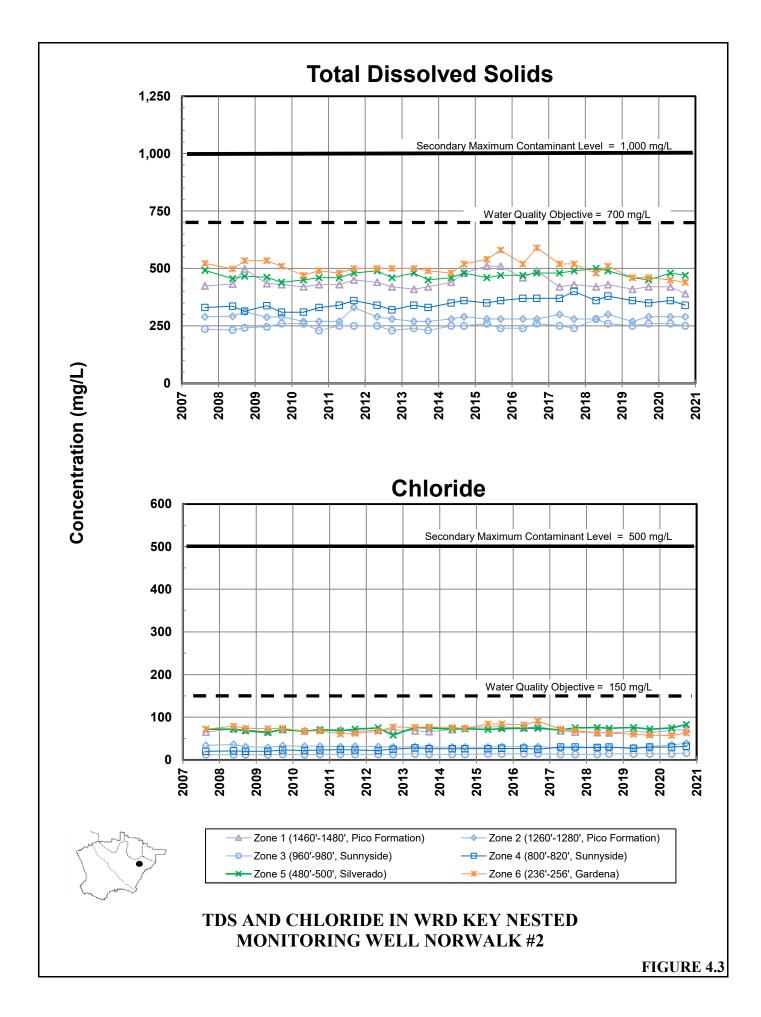


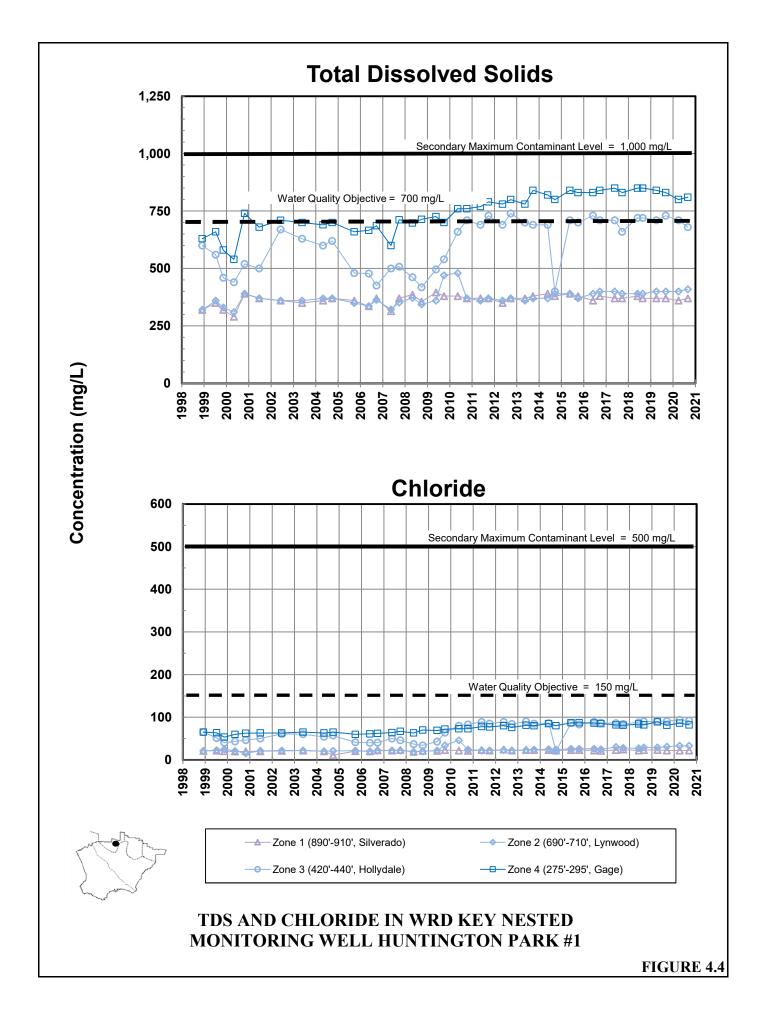


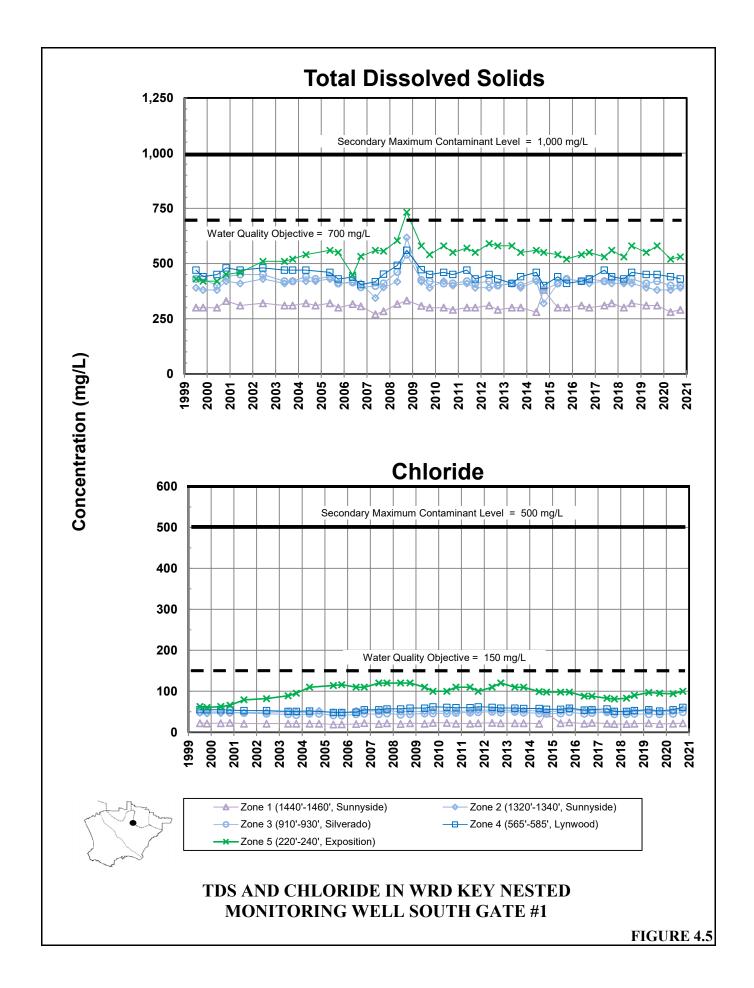


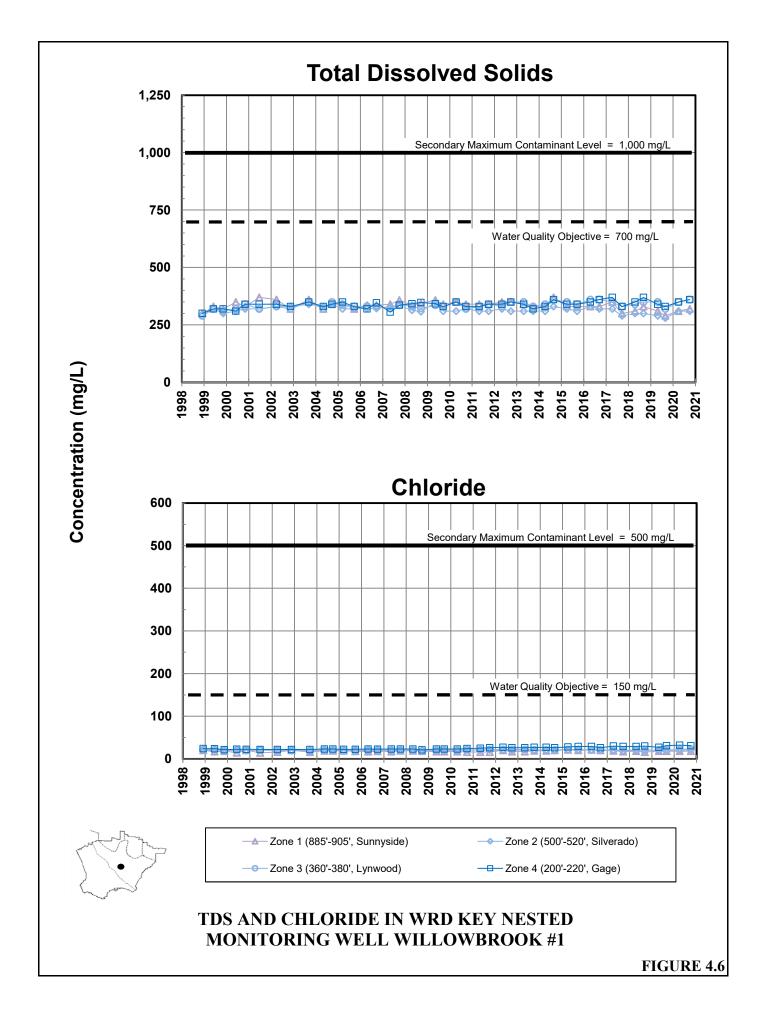


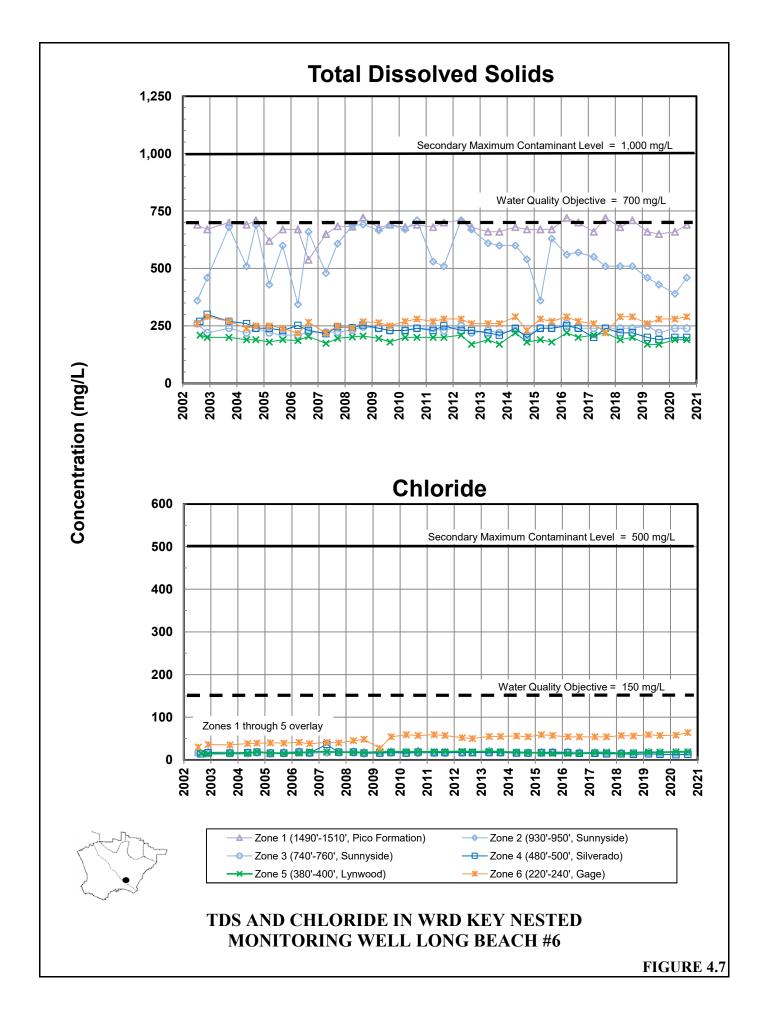


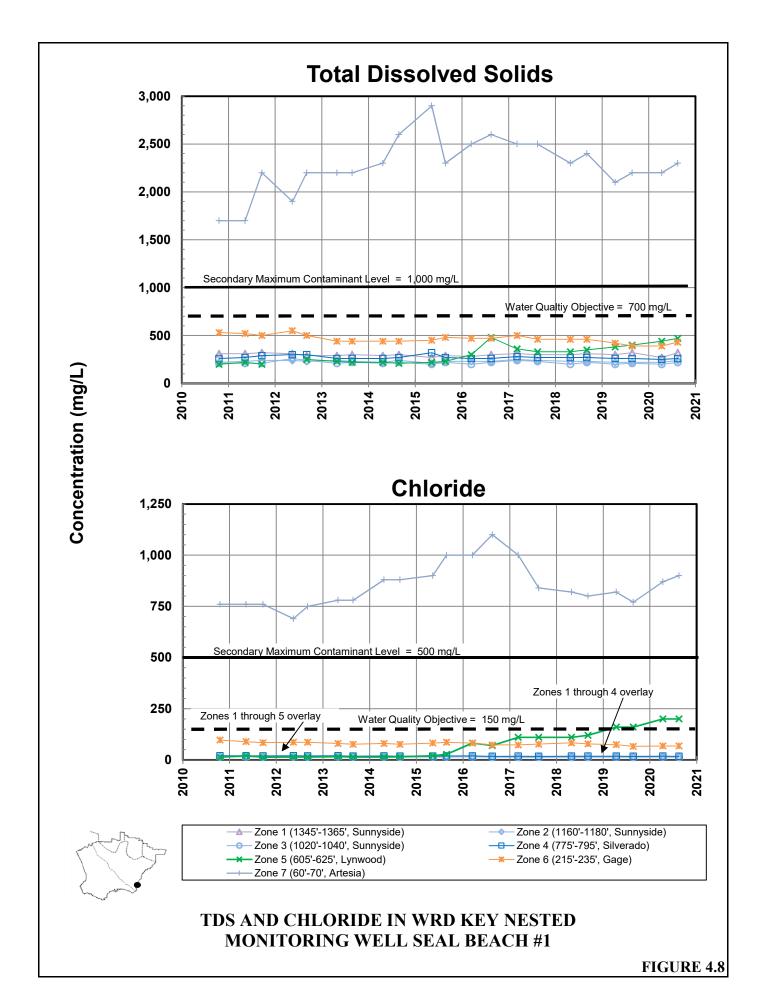


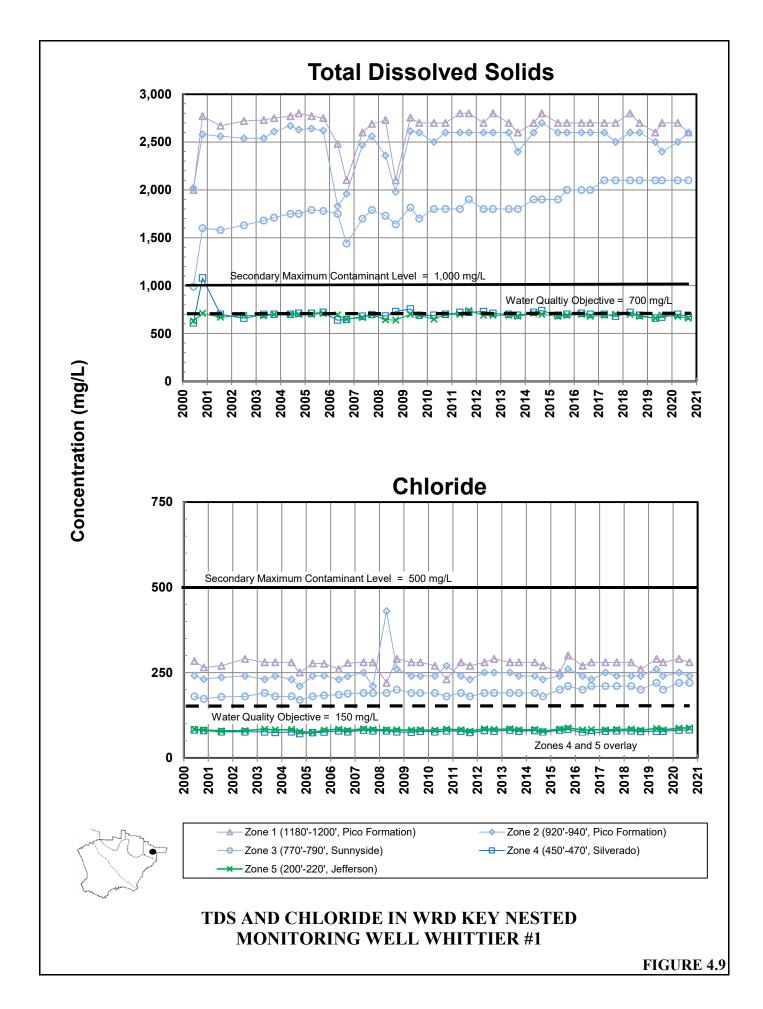


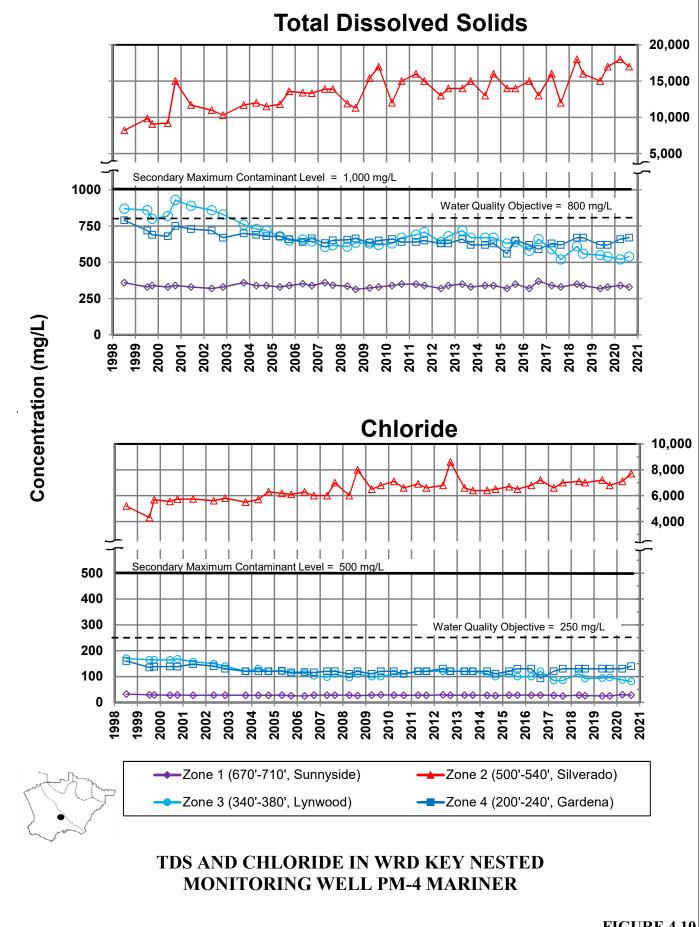


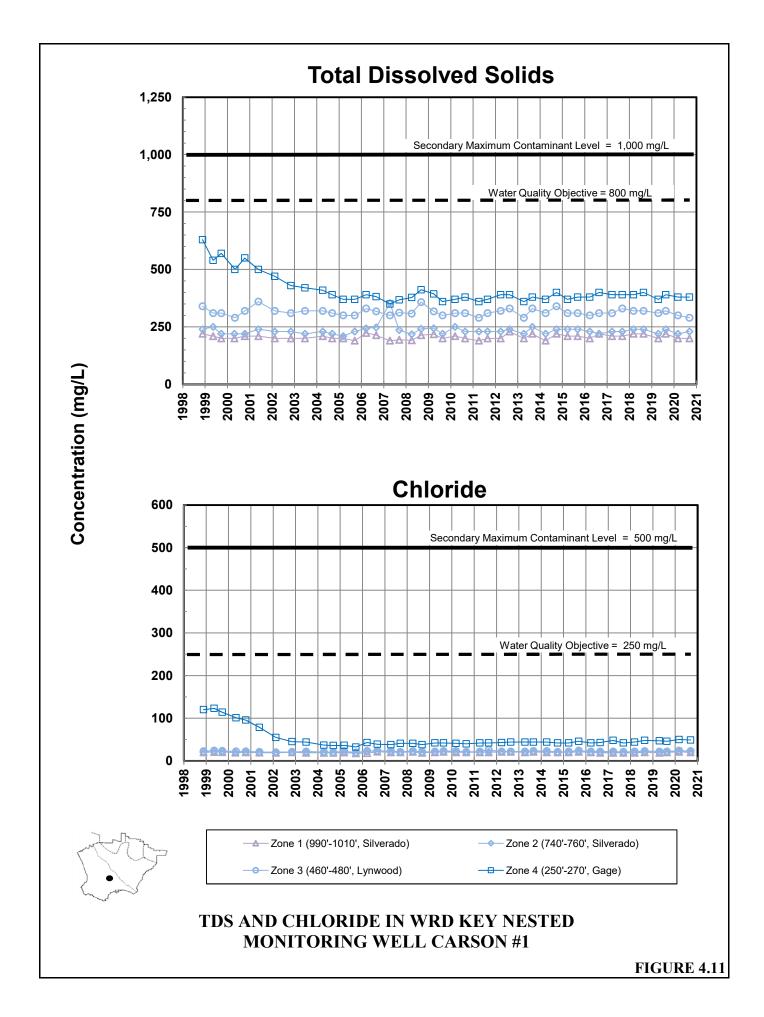


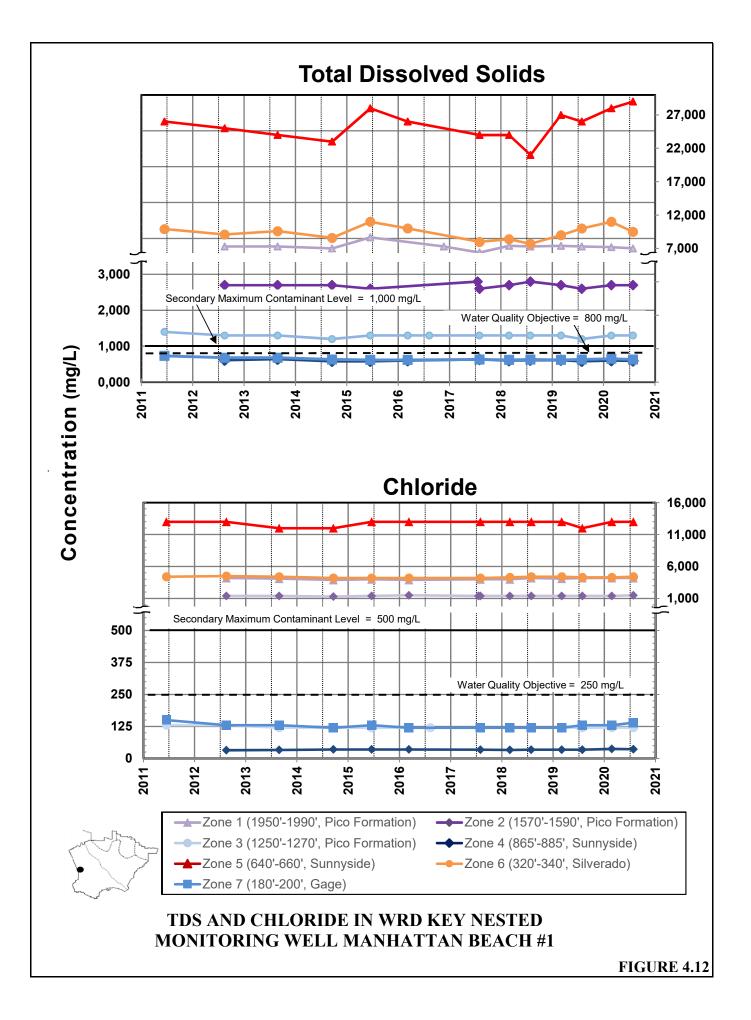












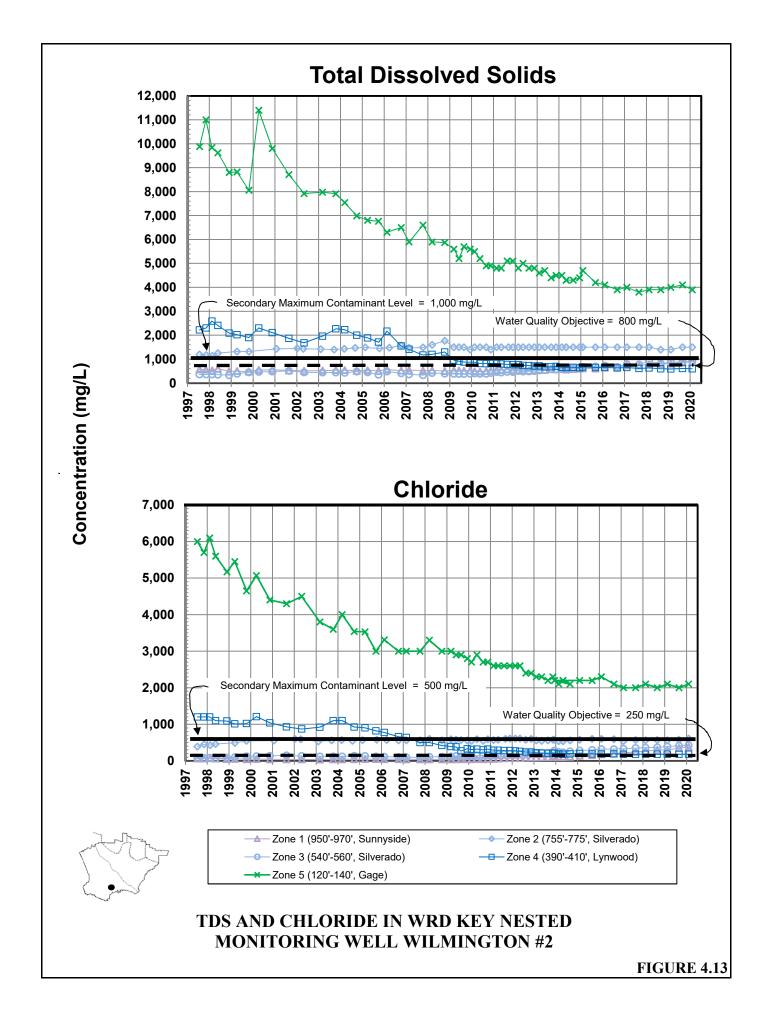


FIGURE 4.10

Mission:

"To provide, protect and preserve high-quality groundwater through innovative, cost-effective and environmentally sensitive basin management practices for the benefit of residents and businesses of the Central and West Coast Basins."

VATER REPLENISHMENT DISTRICT

Water Replenishment District of Southern California 4040 Paramount Boulevard Lakewood, CA 90712 Tel. (562) 921-5521 Fax (562) 921-6101 www.wrd.org